

MERCURY®

Platform Integration
Specifications

07.30.2012

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

1

Disclaimer, License and Restricted Use Agreement

Disclaimer
This Mercury Platform Integration Guide and all specifications and documentation contained
herein or provided to you hereunder (the “Specifications”) are licensed by Mercury Payment
Systems, LLC ("Mercury") on an "AS IS" basis. No representations or warranties are expressed or
implied, including, but not limited to, warranties of suitability, quality, merchantability, or fitness
for a particular purpose (irrespective of any course of dealing, custom or usage of trade), and all
such warranties are expressly and specifically disclaimed. Mercury shall have no liability or
responsibility to you nor any other person or entity with respect to any liability, loss, or damage,
including lost profits whether foreseeable or not, or other obligation for any cause whatsoever,
caused or alleged to be caused directly or indirectly by the Specifications. Use of the
Specifications signifies agreement with this disclaimer, license and restricted use terms and
conditions.

License and Restricted Use
Ownership of all Specifications, related documentation and all intellectual property rights therein
and thereto shall remain at all times with Mercury. All rights not expressly granted to you herein
are reserved to Mercury. Mercury grants you the right to use the Specification for the sole
purpose of transmitting transactions directly to Mercury from a merchant transaction originating
device. Under no circumstances can you reverse engineer, translate, re-direct, emulate,
disseminate to other entities, decompile, adapt, or disassemble the information contained in the
Specifications nor shall you attempt to create source code/object code to emulate the Mercury
Platform. Use of the Specifications does not grant any ownership rights of the Specifications. You
agree that the Specifications and the printed materials and documentation that accompany
these Specifications is the confidential information of Mercury (the “Confidential Information”)
and may not be used except as otherwise expressly permitted herein. You must protect the
Confidential Information consistent with Mercury’s rights therein, including informing persons
who are permitted access thereto in order to satisfy your obligations hereunder to maintain the
confidentiality of the Confidential Information. You may not publish, display, disclose, rent, lease,
modify, loan, distribute, alter or create derivative works based on the Specifications or
Confidential Information or any part thereof.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

2

T a b l e o f C o n t e n t s

Introduction: The MercuryPay™ Partnership Advantage 6

The MercuryPay Platform
Secure, Comprehensive Processing
Recommended Integration Planning, Certification and Implementation Flow

Direct Integrations Methods: ActiveX/DSI and Web Services 8

Supported Functionality Comparison

ActiveX/DSI Integrations using the DataCap System’s DSIClientX™

DSIClientX Methods, Installing and Instantiating the DSIClientX
Initializing the Server List—ServerIpConfig()
Standard XML Elements of a DSIClientX Transaction Request
Handling XML Responses—CmdStatus and TranResponse

MercuryPay Web Services Platform Methods

Web Services Formatting Requirements and Structures
Web Services Primary and Secondary URLs
Web Services Methods and Arguments
Using Web Services Libraries
Web Services: Post

End of Day Settlement Details and Batch Close Considerations 22
 Merchant Category and Processing Requirements

Batch Settlement Options: Host-Based Time or Merchant-Initiated
Batch Summary and Batch Close Settlement Sequence
XML Examples
Settlement Capture: "Stream" or "Batch"
Batch Capture Method and Mercury Stand-In Authorization

Transactions Types and TranCodes 26

Credit Sale, PreAuth and PreAuthCapture, Return, VoiceAuth
Debit Sale and Return
VoidSale and Reversals
PreAuth Reversals Details and XML Examples
PreAuthCapture and VoidSale Failover
PreAuth/PreAuthCapture or Sale/Adjust: Tip-Modified Transactions
PreAuth and PreAuthCapture Details and XML Examples
Sale and Adjust for Quick Serve
Quick Serve Restaurants (QSR) Sale and Adjust

PrePaid Debit Card Support for Partial Approvals and Reversals 35

Partial Authorization Details
Sample XML Request and Response using "Trigger" Value
Reversal Support Required
Partial Auth Reversal Summary
Testing Partial Authorization using specific Trigger Amounts

End-to-End Encryption (E2E) and Tokenization (MToken™) Overview . . . 39
General Overview

E2E Device Integration—Supported Peripherals
Encryption Device Integration: First Steps
Encrypted Data Output Details

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

3

Manual/Keyed Input and Output Details

Mercury Processing End to End Encryption Specifications
XML Account Level Details
Encrypted Data Best Practices
E2E XML Examples
E2E Error Response Messages

MercuryPay MToken Specifications
Initial Token Request: RecordNo and Frequency
Token Data Storage Best Practices
Multiple Merchant Tokenization (MMT)
RecordNo and Frequency Transaction Level Details
MToken XML Examples
Subsequent Usage of Token: ByRecordNo
Using Tokenization for Recurring Billing
MToken Error Response Messages

MercuryGift Card (PrePaid) Integration Specifications 56
Gift Servers DNS and Web Services URL
 Merchant ID, Supported Transactions

PrePaid Issue, Sale, NoNSFSale, Reload, Return
PrePaid Void Capability
PrePaid Balance

Track2 Formats and Mercury Standard Issue Ranges
Third-party Gift Cards
Duplicate Checking, Security Features and using PrePaid CVV Security Data
Setup Attributes Default Values
Grouping Merchants into Chains
Web Services Method

U.S. PIN Debit, EBT, Flexible Spending Account (FSA), Check Auth and E-Commerce . 65
PIN Encryption and Supported Peripherals
Supported E2E/P2PE Devices that also support PIN Debit
U.S. PIN Debit Required Transactions and XML Examples
CardLookup
DataCap Systems Pre-Existing Controls for VeriFone 1000se and Ingenico 3070/6550

EBT Food Stamp and Cash Benefit Cards
ISO Card Formatting for EBT Cards
Required EBT Transactions
FoodStamp Voucher Sale

Flexible Spending Accounts (FSA)
SIGIS and IIAS
Required FSA Transactions and Void/Reversal Support
Partial Approvals Required
CardLookup Required for FSA Card Usage
FSA XML Transaction Examples
Developer Testing

Check Authorization
CheckAuth Details
MICR and Driver's License Testing

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

4

Mercury's E-Commerce Solutions
MercuryPay HostedCheckout
Gateway E-Commerce Solutions

Merchant ID Requirements
Transaction Date/Shipping Dates
E-Commerce Card Data Storage using MToken
Required Transactions and Use of Memo
CVV and AVS Data to Obtain CVV and AVS Result Data
Supporting Gift over E-Commerce

Plug 'n Pay Integration Methods

Canadian EMV/Chip and PIN Integration and Certification Requirements . . . 77
Overview
EMV/Chip and PIN Integration Components and VeriFone Vx810

EMV Certification Project Outline

Setting up the DataCap Components

SQL Instance
NETePayML-MercuryEMV and EMVCanadianClient Testing Application
DSIEMVClientX

Using the DataCap Systems DSIEMVClientX Programming Interface Specifications
Supported EMV Transactions and Admin Functionality
Canadian EMV/Chip and PIN General Integration Information

EMV/Chip and PIN Specification Details
Using Print Data, Print Data Examples
EMV Manual Entry for Credit Transactions
Processing Mercury Gift Transactions
Dial-Backup
Duplicate Override, Gratuity, Cash Back

Canadian EMV/Chip and PIN Receipt Requirements
Canadian EMV/Chip and PIN Certification Process
Canadian EMV/Chip and PIN Production Requirements and Install Procedures

Important Preliminary Steps: Obtaining the Deployment Identifier
Production Deployment: DataCap SQL Instance, NETePay 5.0 and DSIEMVClientX
Coordinating with Mercury's Internal Support for Staging Files and DeploymentID
Remoting in to the DataCap Server for NETePay license and Parameters
Important! Verifying Merchant Information and Running live tests

Additional MercuryPay Processing Features 91
Mercury Stand-In Authorizations
Duplicate Protection and Handling Transaction Time-Outs
Contactless Payments
Downgrades, Swiped vs. Manual
Using Level II Data: Tax and Customer Code for Corporate Card Support
Utilizing CVV and AVS in Card-Not-Present Transactions

Card Verification Data and result Codes
Address Verification Service (AVS)

Card Data Security: Laws, Industry Rules and Regulations 97
PCI: Payment Card Industry
Card Data Security Standards, Rules, and Regulations
PA-DSS (Payment Application Data Security Standard)

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

5

PED Security Compliance and Dates
Printing, Storing and Displaying Card Data
PCI-PA-DSS Summary by Merchant Category
Card Data Security Related Links

Appendix: Additional Resources 103

1. General Magnetic Track Data and Card Reader Configurations
2. Supported Transactions
3. AVS Response Codes
4. Platform, DSIClientX Error and Exception Status Messaging
5. Mercury's Web Services BIN Lookup
6. Error Handling and Website Requirements for E-Commerce Environments
7. Legacy Canadian Debit Integration Information
8. DataCap Systems, Inc. IP/Dial Bridge™ for Mercury
9. Certification Network Testing Information

Overview to this Guide

The purpose of this guide is to introduce Mercury developer partners, software engineers and programmers to the
MercuryPay platform integration specifications by focusing on two integration models: ActiveX/DSI and WebServices.
These represent the historic pathways of MercuryPay processing.

Because of the diverse, evolving nature of Point of Sale systems and the payments industry, this guide is intended to be
used as a reference to the specification standards, a best practice guide and a stepping stone. Though developers will find
very specific sets of transaction, features and security requirements outlined in this guide, as well as specific requirements
for certification, the intention of these specifications is not to define or limit the character of the POS. Our partner's
business and target markets will always, in the end, drive the specific features and functionality of the integrated solution.
This guide is intended to be the reference point for a developer’s integration to Mercury, the supported platform features
and to outline a pathway for certification.

All POS systems integrating to the MercuryPay platform are required to complete certification scripts, go through a
transaction and beta review prior to boarding live merchants to the MercuryPay production platform. Additionally, all POS
systems will be required to confirm compliance path to the existing standards set by the PCI Council’s Payment Application
Data Security Standard.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

6

The MercuryPay™ Partnership Advantage

The MercuryPay Platform
MercuryPay is the name of the processing platforms and Mercury’s multi-server networks. MercuryPay is a secure,
comprehensive IP and dial network designed to meet the flexible features and processing demands of today’s integrated
software point-of-sale (POS) systems. Mercury’s multi-protocol capability handles transactions from a variety of formats
including ActiveX IP/dial, Web Services/HTTPS Posts, Terminal IP, Terminal Dial, and as well, ISO and Text protocols that allow
transaction routing directly through our servers to back end processing networks.

MercuryPay processing is defined by enormous server capacity and server redundancy; servers divided geographically and
maintained with state of the art load balancing capability to assure maximum merchant processing up time. Yet, for Mercury's
developer partners, direct access to the power and security of the MercuryPay platform remains a well defined process
involving a series of request and response exchanges using a simplified transaction shell (XML) sent directly to the MercuryPay
servers or sent via a Web Service https post to our WebServices or HostedCheckout platforms.

Secure, Comprehensive Processing
 Products and Security

 Compliance-path integration support using the MercuryShield™ suite of security products:
TranSentry™, Mercury's PA-DSS validated middleware
End-to-End Encryption, also referred to as Point-to-Point
MToken™, Mercury’s proprietary tokenization technology

 Hosted iFrame or redirect processing for mobile and E-Commerce featuring
 HostedCheckout™
 HostedCheckout for POS
 HostedCheckout for Mobile

 MercuryGift™ comprehensive Gift program
Free gift transaction processing
Gift formatting parallels credit transactions for ease of integration
Single and multi-store functionality with ACH disbursements
Online balance inquiry and history for gift card holders

 MercuryLoyalty™ innovative mobile loyalty solution
Cloud based architecture providing rich business analytics
Drives high customer participation
Enables customer retention and marketing via SMS Text, email or social media

Platform Capability and Features

 Multiple geographic server redundancy
 MercuryStand-In™ authorization for seamless outage protection
 Duplicate transaction and settlement logic to protect against unwanted duplications
 Comprehensive transaction Support (Credit, US Debit, CA debit, EMV, Gift, EBT, FSA and CheckAuth
 Partnership with DataCap Systems, Inc. and their custom suite of ePay products:

DSIClientX/NETePay “one-to-many” integration potential
IP to dial solutions for many ECR using DataCap's NoLoad Tran devices
Dial Backup solution with DataCap’s IP/Dial Bridge™ for Mercury
ActiveX controls in support of U.S. and Canadian debit Pin pad integration
A separate DSIEMVClientX and NETePay for ease of implementation of Canadian EMV support

 Real-time merchant access to transaction and settlement reports
 Real-time reseller and developer access to Mercury portal
 Next day funding through HSBC
 Reseller and merchant smart messaging with MercuryAlerts™
 Live 24/7 technical support at 800-846-4472
 Secure E-Commerce integrations through our HostedCheckout redirect or iFrame pathways

PCI and Card Data Security
 Mercury is a long-standing, PCI PA-DSS validated Level One Service Provider

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

7

 Knowledgeable professional staff on the cutting edge of card data security
 Long-standing partnership with trusted PA-QSAs
 Assistance in understanding the PA-DSS Validation/Certification process
 Security and compliance integrity built in to your application from the onset
 Integrating with PCI Security Standards from the onset assures market advantage

Dedicated Integration Support
 Knowledgeable, dedicated team of Developer Support Representatives
 Full functionality development testing platform with real-time reporting logs
 Portal access to Integration Guides, SDK documentation, Sample Codes, and current PCI information

Mercury’s developer support and integration specialists are available to assist developers throughout the integration process.
Please contact the Mercury developer support team at: DeveloperSupportNotify@mercurypay.com; 800-846-4472, ext. 1808
(Monday-Friday, 8:00 a.m. – 5:00 p.m. MST); FAX: 970-385-2738.

Recommended Integration Planning, Certification and Implementation Flow

1. Pre-development and security planning

 Decide which features and functionalities you wish to implement, which may drive the programming language
or integration method best suited for these features

 Understand target industry/business environment-specific requirements
 Decide which integration methods best fit your native POS architecture
 Review Mercury’s SDK , the XML request/response format and error response handling
 Consult with a security specialist on Card Data and Payment Application Security Standards (PA-DSS)
 Pre-integration kick off interview with your developer support and compliance representative, so we

understand the scope of your integration to better customize our support

2. Implement the integration
 Combining your programming language with the tools and sample codes from our SDK
 Additional XML formatting guidelines from the DSIClientX™ Programming Interface Specification
 Active programming development and testing of the developer’s certification network

3. Certifying your integration

 Transaction review of required and supported transactions using Mercury test scripts
 Quick analysis and turn around by your designated developer support representative
 Compliance review –our compliance specialists can assist with a preliminary review
 Beta Review and transaction monitoring of first time merchant site through a complete billing cycle

Pre-Developemt
Planning

Implementation
of the

Integration

Certification and
Beta Review

General

Release

POS Product
Enhancement

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

8

 Personal step-by-step coordination of Interac Canadian Debit or EMV certification process

4. Release and distribution of your payment application with Mercury
 Prospect to processing: our internal sales force can help you grow your channel
 Careful monitoring of production transaction integrity to guarantee best qualified rates are maintained
 Underwriting analysis on merchant statement to assure payment type interchange stability

5. Updating and enhancing your integration

 Start with credit certification; add other enhancements later as in Mercury's Prepaid Gift and Loyalty
 Build momentum in your POS channel with MercuryGift, PIN debit, and E-Commerce enhancements
 Create market confidence with a PCI /PA-DSS validated application
 Reduce the scope of compliance with our security products, E2E and MToken

Direct Integration Methods: ActiveX/DSI or via WebServices

Mercury’s primary integration paths are based on specifications developed by DataCap Systems, Inc. using either a locally installed
ActiveX control or by making a HTTPS post/Web Services call to our Web Services servers. Using DataCap’s DSIClientX™, a locally
installed encryption ActiveX client, integrators can send transaction requests in XML format for authorization directly to our
processing servers. Alternatively, by applying a “SOAP envelope,” to a similar set of XML exchanges, integrators can pass
transactions to Mercury’s processing networks using our Web Services methods.

Most processing functions (all platform recognized transaction types and Admin settlement features) is common to both ActiveX
and web service integrations. Where Web Services can also pull more detailed batching records directly from Mercury's reporting
logs, there is a reliance on DataCap's ActiveX controls for Canadian EMV, Canadian Interac Debit and using the DataCap Dial Link
Modem for Dial backup support.

Comparative functionality of ActiveX/DSI and Web Services integrations

Platform Functionality and Products ActiveX/DSI Web Services

Transactions: Credit, U.S. Debit, EBT, FSA, Gift, CheckAuth x x

Settlement: BatchSummary and BatchClose x x

End-to-End Encryption and Tokenization Technology x x

Automatic Server Configuration failover x

Mercury outage Stand-in support x x

Card Lookup functionality for FSA or secure card on file x x

Canadian Debit and Canadian EMV x

IP/Dial Link Bridge for Mercury™ * x

TranSentry™ using integrated .NET DLLs x

Batch and transaction details x

HostedCheckout, HostedCheckout for POS x

HostedCheckout for Mobile x

Mercury Virtual Terminal™ x x

* Credit functionality is supported when using tokenization over the dial bridge. E2E functionality is currently
unsupported when using DataCap’s Dial Backup Bridge.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

9

ActiveX/DSI Integrations using the DataCap Systems, Inc., DSIClientX™

The DSIClientX is a Windows ActiveX local client control used to process secure electronic payments. Transaction requests in XML
format are submitted to the ActiveX client control, which handles the encryption and transmits it to and from the Mercury
processing server. The transaction response is returned to the client control in XML format for the POS to integrate into its
functionality features. DSIClientX control requires that TCP/IP networking is installed and operating correctly. DSIClientX utilizes
Windows cryptographic services - the 128bit cipher (high encryption) must be installed on the system running DSIClientX. Ports
9000 and 9100 (if gift is used) need to allow outbound traffic to the Internet.

Integration Best Practices: The DSIClientX is best suited to Windows-based POS systems. If an alternative operating
system supports the use of ActiveX controls, using this integration method may still be possible. Exception: integrating to a
Windows CE application will require the use of web service methods.

DSIClientX Methods
The DSIClientX Programming Interface Specification (available at http://www.datacapepay.com) lists the methods available
from the client control. The following are the methods required for integration:

1. ServerIPConfig() Each time an instance of the DSIClientX™ is created, ServerIPConfig() must be called to initialize it.

Mercury provides multiple DNS names to be used in the parameter HostList, in order to provide the safeguard of
redundant servers.

2. SetResponseTimeout() Available in the DSIClientX, this function allows the developer to change the default time that the

client will wait for a response from the server. The minimum value is 60 seconds and the maximum is 3900 seconds. The
default value is 300 seconds. In practice, 60 seconds is enough time to consider a transaction as timed out and can be
safely used for the value.

3. ProcessTransaction() All transaction and admin XML requests are sent with a call to ProcessTransaction(). This method

can be used in synchronous and asynchronous modes.

 Synchronous mode: The DSIClientX will submit a transaction and wait to receive a response. Only then will the
control send the next transaction.

 Asynchronous mode: Causes the control to return immediately upon submitting a transaction and then continue
to send transactions. An event is fired when a response is received. The POS will need to parse the response XML
for the invoice number to determine the original request to which a particular response refers.

Installing the DSIClientX Control
The DSIClientX can be installed either by running the included Windows installer, or by incorporating the control into the POS
system install. For the latter option, refer to the DSIClientX Programming Interface Specification for details regarding the
components that need to be installed and correctly registered.

Integration Best Practices: The latest version of the DSIClientX Application, ActiveX Control and Programming Interface
Specification may be downloaded anytime at: http://www.datacapepay.com.

All transactions intended for Mercury must be routed through the DSIClientX control, but the location of its install is at the
discretion of the developer and system networking requirements. The DSIClientX can be installed on each register, or on a back
office server, depending upon the design of the POS system network.

Instantiating the DSIClientX and taking advantage of primary and secondary server failover
An instance of the DSIClientX should be initialized upon POS startup or when the first transaction is processed. It is not
recommended to instantiate each transaction as there may be a negative side effect in the loss of the host cycling provided by
the client resulting in lost time for each transaction request.

 Rather, use the same instance with a single ServerIPConfig and only refresh if there is a problem connecting to

the hosts. Once ServerIPConfig is called, the client instance maintains the host IP addresses to be used for
transaction processing.

http://www.datacapepay.com/
http://www.datacapepay.com/

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

10

 If the first host in the list is reached, then that host is used for processing until it fails. The DSIClient will then
attempt to connect to the next host in the list.

 If the next host can be reached, then that host is the one used for processing until it fails. The client will continue
this behavior until no host can be reached, at which time it will return an “Unable to Connect to any Server”
response.

 At this point, a refresh on ServerIPConfig should be done for retry. If there is continued failure, then the
merchant likely has a general internet failure.

Use ServerIPConfig to reconfigure when a gift card transaction is needed unless you create a separate client instance just for
gift, in which case you would have one instance for credit/debit and one instance for gift.

Integration Best Practices: If communications errors are received from the DSIClientX, the POS should have a mechanism
to dispose of the object and re-initialize it.

Integration Best Practices: Gift and loyalty transactions make use of a different Domain Name Server and Port than
transactions (credit, debit, EBT, check), so it is important to create and initialize a new instance of the DSIClientX for all gift
and loyalty transactions.

Single-Threaded, Multi-Threaded
It is recommended to process transactions serially (single-threaded, one after the other, first-in first-out style) and therefore
requiring the need to create only a single instance of the client object. In this way, developers call ServerIPConfig only once and
then use that same instance for every transaction. The only time that they would need to create a new instance is if something
goes wrong, such as a communication issue rendering them unable to process, or if they want to use the same variable of the
instance for both credit transaction types (credit, debit, EBT, check) and gift transaction types (gift and loyalty). If they want to
use the variable of the instance in their code for both credit and gift, then they would at the very least need to call
ServerIPConfig to re-route the requests appropriately depending on the card type.

Integration Best Practices: Create a single instance for processing to Mercury’s credit servers, x1.mercurypay.com and
b2.backuppay.com, and a single instance for processing to Mercury’s gift servers, g1.mercurypay.com and
g2.backuppay.com.

If developers want to process transactions in a parallel* manner (multi-threaded, multiple transactions at the exact same
time), they must be able to code for and handle multiple instances of the DSIClientX.

* Note: Mercury manages hundreds of socket connections in each millisecond of card processing in order to optimize
overall processing integrity. Certain load limitations are in place to protect and assure this stability. Should a developer
desire to code in a multi-threaded manner it is important to work closely with your developer support representative in
order to assess if any adjustments to Mercury’s socket throttling would be required.

Initializing the Server List
To ensure processing dependability, Mercury maintains multiple processing servers in geographically separate locations, as
well as redundant paths (primary and secondary) to each of these servers. For Mercury's primary and secondary servers, DNS
names are used instead of IP addresses as network maintenance and load balancing occasionally reroutes traffic between
multiple processing servers.

When making the call to ServerIpConfig(), list DNS stings separated by a semi-colon ';' with no spaces, as in:
x1.mercurypay.com;b2.backuppay.com. The use of spaces in the ServerIPConfig will result in only one server being used.

Production and Development Testing DNS Host Names—Credit Servers

Server DNS Host Names

Production Payments Primary: x1.mercurypay.com

Production Payments Secondary: b2.backuppay.com

Production ServerIPConfig string: x1.mercurypay.com;b2.backuppay.com

Production Gift ServerIPConfig string: g1.mercurypay.com;g2.backuppay.com

Development Testing Primary x1.mercurydev.net;

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

11

Development Testing Secondary x2.mercurydev.net

Development ServerIPConfig string: x1.mercurydev.net;x2.mercurydev.net

Integration Best Practices: Providing for configurable connection information allows the use of the DataCap Systems, Inc.
IP/Dial Backup Bridge™ device developed for Mercury. The IP/Dial Bridge enables Windows-based POS systems (non-
embedded Windows 2000© or greater) to seamlessly roll over to dial processing should their IP connection fail and then
automatically switch back to IP processing when connectivity returns. Dial Bridge software on the POS system monitors
and routes the processing traffic via a DialLink modem.

The IP/Dial Bridge for Mercury and DialLink Modem
 Enables automatic dial failover for payment processing when IP services are disrupted
 Improves reliability and functionality for merchants at a lower cost
 Supports credit, U.S. PIN debit, Gift, EBT and food stamp transactions
 Can also be used as a stand-alone dial solution
 Pre-loaded to facilitate fast deployment and easy, 2-minute, automated 24/7 online activation
 Faster connection time than conventional modems
 Multi-lane capability up to four lanes per Bridge unit
 Tokenization: the Dial Bridge supports Mercury’s MToken for credit transactions only.

 The Dial Bridge does not support E2E Encryption functionality.

 Standard XML Elements of a DSIClientX-Mercury Transaction Request

ActiveX and Web Services integration methods utilize the exchange of Transaction and Admin XMLs. A complete list of
Mercury Request and Response XML examples is available from your developer support representative. The DSIClientX
Programming Interface Specification is available at http://www.datacapepay.com. Please note: DataCap Systems’ DSIClientX
guide has multi-processor application and there are minor variances when integrating to MercuryPay:

1. Track2 data is never sent in PreAuthCapture, ReverseFSASale or Adjust, use AcctNo and Expiration Date or the Token

RecordNo
2. TerminalID is never used on MercuryPay; always use TerminalName if requiring a terminal identifier
3. RefNo and InvoiceNo are required numeric fields only. (Never Alpha-numeric) RefNo is used as a “filler value” on the

initial request until an actual host value is returned indicating the transaction is now in the batch file; a true RefNo is
returned on the response and logged at the host for all completed transactions. In the transaction Request,
developers may code RefNo = InvoiceNo with exception of transactions that must “reference” previously completed
transactions as in Voids, Adjusts or ReverseFSASale

4. Memo is a required field in all ActiveX and WebServices integrations
5. PadReset is required for Canadian debit and Canadian EMV and is specific to MercuryPay
6. End-to-End Encryption data elements are specific to MercuryPay
7. All Tokenization elements (RecordNo, ByRecordNo transactions and Frequency) are specific to MercuryPay.

Optional Reporting Fields
Use TerminalName, OperatorID, and ShiftName to send user-supplied data that will be shown on MercuryView. Web reports
can be grouped by these useful identifiers.

Integration Best Practices: Never use the optional field of <TerminalID> with two digit numeric characters as it may
append itself to the merchant ID in the XML request and generate an error MERCHANT ID NOT FOUND.

http://www.datacapepay.com/

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

12

XML Request and Response Example
In the body of the example XML below, the data elements included within the <Transaction> level, (shaded) are typical of
XML data elements in the request. Here, for the purpose of discussing the individual data elements, is an encrypted credit
sale with a request for a one time token (RecordNo):

<?xml version="1.0"?>
<TStream>
 <Transaction>
 <MerchantID>395347308=E2ETKN</MerchantID>
 <TranType>Credit</TranType>
 <TranCode>Sale</TranCode>
 <InvoiceNo>10</InvoiceNo>
 <RefNo>10</RefNo>
 <Memo>Example XML Memo v1.0</Memo>

 <Frequency>OneTime</Frequency>
  <RecordNo>RecordNumberRequested</RecordNo>
  <PartialAuth>Allow</PartialAuth>

 <Account>
 <EncryptedFormat>MagneSafe</EncryptedFormat>

<AccountSource>Swiped</AccountSource>
<EncryptedBlock>F40DDBA1F645CC8DB85A6459D45AFF8002C244A0F74402B479ABC99

15EC9567C81BE99CE4483AF3D</EncryptedBlock>
<EncryptedKey>9012090B01C4F200002B</EncryptedKey>

</Account>
 <Amount>
 <Purchase>1.05</Purchase>
 </Amount>
 </Transaction>
</TStream>

The following XML data components are used in standard ActiveX/DSI transaction request:

1. Mercury Merchant ID (MID) Allow up to 24 Alpha-numeric characters for the Merchant ID. The typical format for a
Mercury Merchant ID combines an 11 digit numeric value, separated with an ‘=’ and a 6 digit alpha value as in:
884300XXXXX=ABCDEF. Mercury merchant accounts are set up with a primary Merchant ID that is used to identify the
account internally and externally for POS configuration and for use in transmitting banking information and deposits.
Under the primary MID, it is also possible to have several parallel processing paths or sub IDs often referred to as Terminal
IDs (TID). Each separate TID though processing under a separate number is linked to route deposits to the primary
Merchant account.

MerchantID level account settings can be configured at Mercury with a range of attributes that must parallel the POS
system's functionality. These include: duplicate checking, contactless capability, enabling E2E and Tokenization.
These configuration flags, if not in sync with the POS system can render the merchant location unable to process. For
example, if the POS is processing using E2E, then the MID must be enabled to allow E2E. If a system is contactless
capable, then the MID must be enabled to allow for a contactless point of sale entry mode.

Multiple Merchant ID Numbers for MOTO and E-Commerce Keyed Transaction POS systems intended for use in
businesses with both card-present and card-not-present transactions as in mail order/telephone order (MOTO) sales
or delivery services; with greater than 80 percent keyed transactions are required to support functionality that
distinguishes multiple merchant accounts, each with a unique MID. When the POS supports multiple MIDs, a clerk can
use one MID for (keyed) phone orders, and the main MID for in-store (swiped/keyed) transactions. Additionally,
developers incorporating E-Commerce processing modules into their POS software should also support MMID. E-
Commerce transactions must be processed separately from brick-and-mortar and MOTO transactions.

Multiple-Merchant Tokenization (MMT) MMT enables a single business entity with multiple locations to use

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

13

Mercury's MToken platform across all of their locations if they all share a common ownership attributes (legal
name, Tax ID and owner) and have the cross-location centrally housed data base infrastructure in place to support
it. Upon request, Mercury's Underwriting account specialists can authorize the creation of an MMT grouping that
allows token sharing from one location to another.

In most cases this will be implemented at the merchant level without issue but there are safeguards in place to
prevent inadvertent users of MMT outside the prescribed group. Tokens are tied to merchant locations and can
only be used in MMT situations if grouped. For example, in the case that ungrouped Merchant A tries to redeem a
token issued from grouped Merchant B, then Merchant A would receive a response of “Token Invalid.”

2. Transaction Type (TranType) and Transaction Codes (TranCode) Transaction Types include Credit, Debit, EBT, FSA,

Gift/Prepaid, Loyalty, Admin, Canadian Debit /EMV and CheckAuth. The actual transactions run (as in Sale, Return,
Balance, etc.) under these specific tenders are termed the TranCode. See the chart below for a complete list of
supported TransactionTypes and TranCodes.

3. InvoiceNo and RefNo The InvoiceNo is the locally generated always incrementing individual transaction number. Invoice

may be kept unique from the POS numbering logic (also referred to as order, ticket, check, or receipt number) especially in
the case of split tenders. Each transaction that is processed with separate cardholder data, including each individual
split tender, requires a unique InvoiceNo. For example, if the POS presents a ticket number #1234 for $100 and this ticket
is split onto four credit cards, then the POS would need to generate four separate receipts, each with its own unique
InvoiceNo specific to each of the four cardholders. For processing, only the right 10 numbers are passed—and these must
be unique per transaction. Alpha characters, dashes or special characters may not be used. The right 10 of the
InvoiceNo value is used in Mercury’s duplicate checking logic. The use of alpha characters, dashes or special characters
can compromise this logic. InvoiceNo: Length: 16 max, Right 10 unique; Data Type: Numeric only; Position: Transaction
level

RefNo is a transaction reference value returned in the transaction response and indicates that an approved transaction
has been “referenced” and is added to the current batch file. It is a sequentially incrementing number assigned by
Mercury to each approved transaction that has been added to an open batch. The first transaction in every batch is
assigned RefNo 0001; the second is 0002, etc. up to 1500. Upon a BatchClose, the Refno of the first transaction in the
next open batch returns to 0001. Use the actual returned RefNo whenever submitting a subsequent transaction that
references the original (Reversal/VoidSale or Adjust). Note that an approved PreAuth transaction, unlike an approved
Sale, does not return an actual RefNo until it is captured.

Integration Best Practices: In transaction requests, the RefNo is included as a “filler value” and typically is the same value
as the InvoiceNo until the transaction response returns the actual batch specific RefNo value. The returned RefNo is then
used in any subsequent “references to” when running Adjusts/Reversals/VoidSales of that original transaction.

4. Memo: POS Product Name and Version using the <Memo> data element Placed in all XML transaction requests, the

<Memo> XML data element is used to identify the POS name and version.

Integration Best Practices: Dynamically build the Memo tag so that it pulls the product name and version from the
project. This way the Memo stays current as the application version changes. Send the POS name and version number in
the following format: Length: 40 maximum; Data Type: Alpha-Numeric; Position: Transaction level.

Example: <Memo>POS NAME v1.10A-08</Memo>

5. Frequency and RecordNo —Mercury's proprietary tokenization method Tokenization of the transaction account
number for subsequent use (MToken™) is widely used, especially in conjunction with E2E/Point-to-Point encryption.
On the MercuryPay platform, tokens are referred to as "record numbers" or RecordNo in the XML format. A RecordNo
will be requested with two tags: 1. the Frequency of the token requested ("OneTime" or "Recurring") and 2., either a
request for token ("RecordNumberRequested") or the actual token returned in the original response. The
Token/RecordNos vary in length depending on card data and it is important to code for up to Length: 100 alpha-
numeric and special characters in the response, Data Type: Alpha-Numeric; Position: Transaction level.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

14

6. "Allow" Partial Authorization Use of this data element was mandated by the Card Brands (Visa, MasterCard and
Discover) specifically in reference to the growing use of Prepaid and Card Branded Debit cards. Use of the data
element will “allow” a partial approval if the balance on the card is less than the purchase amount requested. The
transaction will approve for the authorized balance amount available on the card and will not decline the transaction.
In the response, the POS will receive PARTIAL AP in the text response and the Authorized Amount will be less than the
original purchase amount. The PARTIAL AP response requires developers to allow for a balance due functionality in
their POS. If for some reason the cardholder is unable to complete the balance due transaction, the developer will
need to send a Reversal/VoidSale of the partially approved amount.

7. Account Data This is the cardholder account data obtained from a clear text MSR, manually entered, encryption
reader, or from a peripheral device.

In a standard non encrypted swiped request, Track1 or Track2 data may be used:

 <Account>
 <Track2>4003000123456781=13055025432198712345</Track2>
 </Account>

In a non encrypted manual request, AcctNo and ExpDate are used:

 <Account>
 <AcctNo>5499990123456781</AcctNo>
 <ExpDate>0513</ExpDate>
 </Account>

In the encrypted credit sale example above, the cardholder account data is encrypted and the account data is
requested with four E2E elements: <EncryptedFormat>, <AccountSource>, <EncryptedBlock> and <EncryptedKey>.

<Account>
 <EncryptedFormat>MagneSafe</EncryptedFormat>

<AccountSource>Swiped</AccountSource>
<EncryptedBlock>F40DDBA1F645CC8DB85A6459D45AFF8002C244A0F74402B479ABC99

15EC9567C81BE99CE4483AF3D</EncryptedBlock>
<EncryptedKey>9012090B01C4F200002B</EncryptedKey>

</Account>

Developers Note: For the most secure method of handing account data, Mercury recommends the use of encrypted
card readers followed up with the return of a token for subsequent use.

8. The Amount Data element is the requested purchase amount. On Credit Sale, only the <Purchase> amount is used:

 <Amount>
 <Purchase>1.03</Purchase>
 </Amount>

On Debit requests a cash back amount may also be used:

 <Amount>
 <Purchase>5.00</Purchase>
 <CashBack>2.00</CashBack>
 </Amount>

When sending a Credit PreAuth request, both a <Purchase> and <Authorize> amount are used:

 <Amount>
 <Purchase>2.00</Purchase>
 <Authorize>2.00</Authorize>
 </Amount>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

15

When sending Credit PreAuthCapture, a <Gratuity> tag may be added to the request while maintaining the original
purchase and authorize amounts:

 <Amount>
 <Purchase>2.00</Purchase>
 <Authorize>2.00</Authorize>
 <Gratuity>0.50</Gratuity>
 </Amount>

Handling XML Transaction Responses
When using the DSIClientX, transaction request returns an XML response which contains non sensitive response
information that can be used to validate the transaction, build receipts, build records for internal POS reporting and, for
storing for subsequent use.

Response XML are divided into two sections: the Command Response (CmdResponse) and Transaction Response
(TranResponse). Where the CmdResponse shows the general source and state of the authorization response, the
TranResponse provides all the authorization (or decline) details.

<?xml version="1.0"?>

<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>AP</TextResponse>
 </CmdResponse>
 <TranResponse>
 <MerchantID>395347308</MerchantID>
 <AcctNo>400300XXXXXX6781</AcctNo>
 <ExpDate>XXXX</ExpDate>
 <CardType>VISA</CardType>
 <TranCode>Sale</TranCode>
 <AuthCode>000017</AuthCode>
 <CaptureStatus>Captured</CaptureStatus>
 <RefNo>0016</RefNo>
 <InvoiceNo>10</InvoiceNo>
 <OperatorID>MPS Operator</OperatorID>
 <Memo>MPS Example XML v1.0</Memo>
 <Amount>
 <Purchase>1.05</Purchase>
 <Authorize>1.05</Authorize>
 </Amount>
 <AcqRefData>aEb001356567810105c0105d5e00</AcqRefData>
 <RecordNo>D7gnRteph5J9vvsh1rKhu5kQs+BS5ueAIhESEAAjEAB3nA==</RecordNo>
 <ProcessData>|00|410100201000</ProcessData>
 </TranResponse>
</RStream>

The following XML components are returned in ActiveX/DSI transaction responses:

1. Response Origin will indicate the source of the response as "Client" (from the DSIClientX control), "Server," (Mercury's
platform processing servers) or "Processor" (the back end processing network).

2. DSIXReturnCode Server specific or DSIClientX specific TCP/IP six digit codes corresponding to a single or dynamic or

variable message text. Please see Appendix 3.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

16

3. CmdStatus and TextResponse The Command Status is the outcome of the transaction: "Approved," "Declined," (for
Credit, Debit, EBT, Check and Prepaid) "Success," (for Admin requests) or "Error." Error text responses are listed in
Appendix 3. TextResponse is used to qualify the CmdStatus. "Approved" TextResponses include:

Approved TextResponse Details

"AP" Credit response; transaction approved by processor

"APPROVED" Debit and Prepaid response; transaction approved by processor

"PARTIAL AP" Credit card branded pre-paid Debit cards response based on partial approval; response based
on use of "PartialAuth" in request; confirm <Authorize> amount for amount approved.

"AP NEW INFO" Credit response; optional message; account information updated—often address or exp date

"AP*" (Reports as AP DUPE) Indicates duplicate logic enabled when paired with CmdStatus="Approved" and cardholder is
charged only once. AP* is returned when duplicate logic detects same card, same amount
and same invoice.

"APPROVED STANDIN" Transactions approved my Mercury's Standin servers during an outage event

"AP – NOT CAPTURED" Transactions entering the back end processing networks but not captured by the processor—
typically only prior to a stand in event. Requires transaction to be reprocessed.

"REVERSED" Transaction was reversed by the card issuing bank (used with reversal (VoidSale + AcqRefData
+ ProcessData and partial approvals.)

The list of declined TextResponses varies according to the source of the message and if the decline was due to issuer level
response or if there was an error in the processing of the transaction. Below is a condensed list:

Declined TextResponse Details

"DECLINE" Authorization declined based on issuing bank response.

"CALL ____" Referrals Call the Voice Authorization center; ("Call ND," "Call AE," "Call Discover")

"PIC UP" Authorization Declined; authorization network requests picking up the card and reporting.

"DECLINED-CV2 FAIL" Visa response for CVV2 mismatch. (AMEX uses INVLD CID)

"INVALID EXP DATE" Expiration date entered is incorrect

"INVALID PIN" Incorrect PIN entered on Debit or EBT transaction

"UNAUTH USER" Merchant setting does not allow debit

"NO TRAN FOUND" Failed Reversal attempt

"INV ITEM NUMBER" Typically the RefNo used in VoidSales or an adjustment is incorrect

Integration Best Practices: Merchants should be able to see the TextResponse of decline messages such as “DECLINED
CV2FAIL”, “Call ND”, “PIC UP”, etc., so they can take appropriate action if needed. In most cases, the POS needs only to
display the TextResponse to the merchant.

The TranResponse portion of the response contains all relevant transaction details including:

1. MerchantID is returned without the "Nick Name" in the response.

2. AcctNo, ExpDate and AuthCode may be stored with strong encryption until batch close in order to support a possible
Void, Adjust, or PreAuthCapture. If using MToken or an encryption device, AcctNo will return truncated first 6 last 4 and
expiration date will always be truncated. AuthCode when used in conjunction with a Reversal, VoidSale or
PreAuthCapture is always used in the <TranInfo> node, typically with AcqRefData and Process Data.

Note: If Expiration Date is required for recurring billing account maintenance tables, parse expiration date from the initial
transaction request.

3. CardType and TranCode reflect the card type entered and the transaction code submitted

4. Capture Status will inform the POS if the transaction was "Captured" or "NotCaptured."

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

17

5. RefNo and InvoiceNo The Refno in the response data is the actual approved transaction reference number in the current
live batch. For any subsequent transactions as in VoidSale or Adjusts, this RefNo must be used (not a filler value). The
InvoiceNo is passed back directly from the request.

6. Amount data elements always return both the original purchase amount and the actual authorized amount. Additional
tags vary based on TranCode used (Gratuity, CashBack and Balance).
Note: For partially approved transactions, it is important to always compare original purchase amount with actual
authorization amount in order to submit a "balance due" prompt to the POS clerk.

Standard response Amount data:
 <Amount>
 <Purchase>1.05</Purchase>
 <Authorize>1.05</Authorize>
 </Amount>

PreAuthCapture amount data confirming Gratuity amount:
 <Amount>
 <Purchase>2.02</Purchase>
 <Authorize>2.02</Authorize>
 <Gratuity>0.20</Gratuity>
 </Amount>

Partial approval amount response

 <Amount>
 <Purchase>23.54</Purchase>
 <Authorize>20.00</Authorize>
 </Amount>

Debit Response including confirmation of CashBack

 <Amount>
 <Purchase>2.00</Purchase>
 <Authorize>2.50</Authorize>
 <CashBack>0.50</CashBack>
 </Amount>

EBT response including Balance

 <Amount>
 <Purchase>2.00</Purchase>
 <Authorize>2.00</Authorize>
 <Balance>15.38</Balance>
 </Amount>

7. RecordNo is the returned token reference. The RecordNo may be stored for subsequent use with any "ByRecordNo"

transactions. Min/Max length varies 48-100 alpha-numeric characters.

8. Acquirer Reference Data (AcqRefData) and Process Data is transaction routing and market data (allow up to 200 Alpha-
numeric characters in length) and is required to be submitted with all PreAuthCapture request, with ReverseFSASale and
used in conjunction with a VoidSale for Reversals. When submitted it is always included in the <TranInfo> data node.

9. AVS Result and CVV Result codes. Address verification Service and Card Security codes. Used for manual card fraud
protection. Card issuing banks do not decline transactions for AVS mismatch and only some issuing banks return declines
for CVV mismatch. POS developers must handle these response codes according to business need and merchant
requirements. Reversal/VoidSales are recommended on all CVV mismatch.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

18

A complete list of Mercury Request and Response XML examples is available from your developer support liaison upon
request. Additionally, refer to the “Transaction Response” section of the DSIClientX Programming Interface Specifications for
specific data element response details. Specifications available at http://www.datacapepay.com.

MercuryPay's Web Services Platform Methods

Mercury’s Web Services is designed for POS systems that cannot utilize a Windows ActiveX control. Web Services methods use the
same set of XML transaction formats inserted into a Simple Object Access Protocol (SOAP) envelope then using this soap-wrapped XML
to make a call to Mercury’s web service servers. The XML transaction response will also be returned in a SOAP envelope. This section
outlines the specifics of an integration utilizing Web Services, including connecting to the servers and explanations of the Web Services
methods available. Because of their inherent ActiveX/DSI reliance, Canadian debit transactions, EMV and Mercury’s dial link backup
Bridge are unsupported when using Web Services methods.

Certain Linux/UNIX developers working in non Windows environments have found a number of open source libraries helpful in building
the SSL post and SOAP wrapper. These include:

1. SSL: OpenSSL http://www.openssl.org opensource and very lightweight also is supported by libCURL below.
2. HTTP: libCurl http://curl.haxx.se/libcurl opensource very extension can do http post, ftp, file and when used with

OpenSSL above can support HTTPS
3. XML: tinyXML http://sourceforge.net/projects/tinyxml very lightweight and fast XML parser and creator.

Web Services Formatting Requirements and Structures

MerchantID and Web Services Password
In order for a transaction to authenticate to the Web Services servers, in addition to a Merchant ID, a Web Services password
is also required.

1. Mercury uses a compound numeric MerchantID and an alpha “NickName” joined by an “=” sign. Allow up to 24
characters total (no spaces) for the merchant ID. Alpha characters in the NickName are case sensitive. The typical
format for a Mercury merchant ID is 8843XXXXXXX=MERCUR.

2. A unique Web Services password is supplied by Mercury upon merchant account set up. Allow up to eight
alphanumeric characters. Alpha characters are upper case. The typical format is 81302DUR.

Web Services Primary and Secondary URLs
Two Web Services URLs are used for redundancy and reliability.

Server URL

Production Web Services W1: https://w1.mercurypay.com/ws/ws.asmx

Production Web Services W2: https://w2.backuppay.com/ws/ws.asmx

Mercury’s WSDL is located at: https://w1.mercurypay.com/ws/ws.asmx?WSDL

Development Testing W1 Primary Server https://w1.mercurydev.net/ws/ws.asmx

(Only the primary is used in testing)

Development Test /Certification WSDL: https://w1.mercurydev.net/ws/ws.asmx?WSDL

IMPORTANT NOTE: Web Services developers will need to monitor and build in provisions to fail over to the alternative WS
server if needed, in the rare event of a Web Services server connection failure. Mercury's Web Services W1 and W2 servers
are geographically separate, yet act as parallel, fully functioning entry points to Mercury's processing platform. In the event of
a web services connectivity failure to either of the WS servers, it is recommended to fail over to the alternate Web Services
server and remain at that URL. It is not necessary to fail back to the previous server or to continue to "try and catch" the
available server. If both WS servers are returning http response connectivity errors, contact Mercury immediately.

Web Services “Merchant ID not Found” and “Invalid Credentials” Errors
If a transaction reaches the Web Services servers, but the merchant account cannot be authenticated, the error “Merchant ID
not found” or “Invalid Credentials” will occur. This may occur when:

1. A malformed SOAP envelope or incorrect XML, the MerchantID or Web Services password cannot be extracted.

http://www.datacapepay.com/
http://www.openssl.org/
http://curl.haxx.se/libcurl
http://sourceforge.net/projects/tinyxml

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

19

2. The MerchantID or Web Services password is incorrect. (Error: "Invalid Credentials Call 1800-846-4472.")
3. The MerchantID or Web Services password is not present on the Mercury Web Services servers.

The Web Services Methods and Arguments
Use Web Services methods to perform the following transactions and functions. NOTE: The XML string specifies the necessary
transaction information that is sent as an argument of the methods.

WS Method Purpose and Argument Description

CreditTransaction Send Credit, U.S. PIN Debit, EBT, Check Authorization, BatchSummary, and BatchClose

 Two arguments: CreditTransaction(trans as string, password as string)

1. trans is an XML string formatted with transaction details as specified in the DSIClientX™ PIS
2. Password is a string that Mercury assigns for a particular merchant ID.

 After processing, web service returns an XML string containing the transaction response data

CBatch Return a dataset with the previous batch of transactions

 One argument CBatch(merchantid as string)

 1. it returns a dataset with a table of transactions in the merchant’s current batch

 2. card data is masked per PCI Data Security Standards

CTranDetail Return transaction records matching a specified invoice

This method will return all transaction records matching the invoice number supplied. The records contain the data
available from Mercury’s merchant web reporting*

 Three arguments: CTranDetail(merchantid as string, pw as string, invoice as string)

 1. merchantid is the merchant ID of this account.

 2. password is a string that Mercury assigns for a particular merchant ID.

 3. invoice is a string that specifies the invoice number of the transaction record needed.

 Example: s = x.CTranDetail(“595901”,”xyz”,"1234”)

 The call to CTranDetail will return all transaction records with the invoice number of “1234.”

CAllDetail Return transaction records that match specified criteria

This method will return up to 3000 records matching the specified invoice (optional), start date (optional), and end date
(optional).

 Five arguments: CAllDetail(merchantid as string, password as string, invoice as string, startdate as string, enddate as string)

 1. merchantid is the merchant ID of this account

 2. password is a string that Mercury assigns for a particular merchant ID

 3. invoice (optional): a string that specifies the invoice number of the transaction record

 4. startdate (optional): string formatted mm/dd/yy, used to find the start date of the invoice

 5. enddate (optional): string formatted mm/dd/yy, specifying the end date to find the invoice

 Example: s = x.CAllDetail(“595901”,”xyz”,”1234”,“01/01/05”,“07/08/05”)

 The call to CAllDetail will return up to 3000 transaction records between the specified dates

 GiftTransaction Send a gift card transaction

 Two arguments: GiftTransaction(trans as string, password as string)

1. trans is an XML string formatted with transaction details as specified in the DSIClientX™ PIS
2. password is a string that Mercury assigns for a particular merchant ID

 Example: s = x.GiftTransaction(tran,"xyz")

Note: IpPort 9100 must be included in the soap wrapped GiftTransaction() request for Prepaid/gift card and loyalty
transactions

BIN Lookup
(Legacy) Determines if the card is FSA, Debit or Credit (recommended: CreditTransaction: CardlookUp)

Two Arguments: x.Lookup(trans as string, password as string)

1. trans is an XML string formatted with transaction details as specified in the DSIClientX™ PIS
2. password is a string that Mercury assigns for a particular merchant ID

*CAllDetail and CTranDetail Records
CAllDetail and CTranDetail return records of data available from MercuryView online reporting including: account number,
expiration date, purchase amount, gratuity, total amount, invoice number, transaction date and time, batch, reference number,
media, transaction type, swiped/manual, cardholder name, terminal name, authcode, operator, status, and whether or not it has
been voided.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

20

Web Services Batch Settlement
Batch settlement functions the same, regardless of whether a POS is integrated via the ActiveX control or Web Services. To
close the batch from a Web Services-integrated POS, use the CreditTransaction web service method, along with the
BatchSummary and BatchClose XML requests.

Using Web Services Libraries
Web Services are Web APIs that can be accessed over a network, the Internet, and executed on a remote system hosting the
requested services.

Web Services is an open standard library delivery mechanism that uses the internet as the packaging. Instead of an ocx or a
dll, a URL is supplied that the program goes to for all the methods and classes available. In the case of Mercury’s web
services platform, in our development network it’s “https://w1.mercurydev.net/ws/ws.asmx”. Any development
environment supporting Web Services can add reference to that URL and they now have access to the methods and classes
it provides.

As an example, here is a partial screen capture of a Mercury-in-house test application with the
Mercury Web Services URL added as the name “ws”.

By right clicking on the ws resource and selecting properties, you can see it has the URL.

Here are the methods and classes available from Mercury’s Web Services library. There are a number that automatically get
added in for the web services technology itself. The ones specific to our Web Services library can be seen by going to the
URL in a web browser, https://w1.mercurydev.net/ws/ws.asmx.

NOTE: Web Services in this project is called “ws.” We then created an
instance of it in our code and named it “w”.

Processing a Transaction using "CreditTransaction"
This is the Web Services equivalent of the DSIClientX method
ProcessTransaction. We call the method “CreditTransaction” in our Web
Services even though it does Debit, EBT, Foodstamp, etc.

There are two required parameters. The first is the transaction XML (tran).
This is the same XML outlined in the DSIClientX Programming Interface
Specifications (with the Mercury specific exceptions). The second is a password (pw) which is the web services password
we use to authenticate merchants sending us transactions on our Web Services platform. Here’s an example of it
completely filled out using the 595901 MerchantID and corresponding web services password of xyz.

w.CreditTransaction("<?xml version=""1.0""?><TStream><Transaction><MerchantID>595901</MerchantID>
<TranType>Credit</TranType> <TranCode>Sale</TranCode><InvoiceNo>1</InvoiceNo><RefNo>1</RefNo><Memo>MPS
Example XML v1.0</Memo><Account><Track2>4003000123456781=09085025432198712345</Track2><Name>MPS
TEST</Name></Account><Amount><Purchase>1.00</Purchase></Amount><TerminalName>MPS
Terminal</TerminalName> <ShiftID>MPS Shift</ShiftID><OperatorID>MPS</OperatorID></Transaction></TStream>",
"xyz")

https://w1.mercurydev.net/ws/ws.asmx
https://w1.mercurydev.net/ws/ws.asmx

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

21

Web Services: POST
When a program sends a transaction using Mercury's Web Services platform, it’s doing what is called a POST. When
developers fill out a form on the web and hit the submit button, your web browser sends the data to the web server in a
POST command.

Some developers, preferring to make their code more lightweight, will skip using the Web Services library and code at a
lower level, doing the POST with the expected data. This is perfectly acceptable. Another reason to skip to the POST is that
some programming environments have a web services implementation that is not compatible with our Web Services
platform. Even though Web Services is an open standard, different implementations of the standard yield compatibility
errors. Additionally, some older development environments do not support Web Services. Direct Posting is then the
preferred option.

The data that is POST-ed to our Web Services platform begins by specifying the method to be implemented in the headers.
The headers just tell the web server how to process the POST. After the headers, you give it the message body; the data or
payload of the transaction to be handled by the method being specified. For Web Services, it expects the data to be SOAP
wrapped. Here is a non encrypted standard credit sale request example of a POST to Mercury’s Web Services platform
using the CreditTransaction method. The headers are in blue with the SOAP wrapped message body data in black.

User-Agent: MPS Transact 1.2.0.4
Content-Type: text/xml; charset=utf-8
SOAPAction: http://www.mercurypay.com/CreditTransaction

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>
 <CreditTransaction xmlns="http://www.mercurypay.com">
 <tran><?xml version="1.0"?>
 <TStream>
 <Transaction>
 <MerchantID>595901</MerchantID>
 <OperatorID>test</OperatorID>
 <TranType>Credit</TranType>
 <TranCode>Sale</TranCode>
 <InvoiceNo>10</InvoiceNo>
 <RefNo>10</RefNo>
 <Memo>MPS Memo1.2.0.4</Memo>
 <PartialAuth>Allow</PartialAuth>
 <Account>
 <Track2>4003000123456781=09085025432198712345</Track2>
 <Name>MPS TEST</Name>
 </Account>
 <Amount>
 <Purchase>1.75</Purchase>
 </Amount>
 </Transaction>
 </TStream></tran>
 <pw>xyz</pw>
 </CreditTransaction>
</soap:Body>

</soap:Envelope>

http://www.mercurypay.com/CreditTransaction
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.mercurypay.com/

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

22

End-of-Day Settlement Details and Batch Considerations

Merchant Categories and Processing Requirements

Mercury recognizes six broad merchant categories which vary slightly for transaction processing and settlement.

1. Standard Retail (end of day typically "auto-settled" or "Time Initiated")
2. Table service restaurant with tip modification (end of day typically settled with by POS locally or "Merchant Initiated)
3. Quick serve restaurant (QSR/fast food): tip adjustments are rare (settlement varies)
4. Mail order/telephone order or MOTO (end of day typically "auto-settled" or "Time Initiated")
5. E-Commerce/HostedCheckout (end of day typically "auto-settled" or "Time Initiated")
6. Unattended Kiosks also referred to as Customer Attended Terminals (CAT) (end of day typically "auto-settled" or

"Time Initiated")

Minimum Required Transactions varies by Merchant Category
Retail Point of Sale developers are required to support at a minimum Sale, Return, VoiceAuth, VoidSale/Reversal and Partial
Authorization. Debit, EBT and CheckAuth verification may also be supported. VoidReturn and Adjust transactions may also be
supported as they have proven helpful for merchants and provide functionality that minimizes developer or processor
customer support resources.

Restaurant POS developers are required to support either PreAuth/PreAuthCapture or Sale/Adjust transactions. Additionally,
Return, VoidSale/Reversal and VoiceAuth transactions are required. Mercury also encourages supporting VoidReturn and
Adjust transactions within restaurant environments.

MOTO and E-Commerce environments are card not present, key entered transactions and rely on the use of Card Security
Code (CVV) and Address Verification Service (AVS). PreAuth and PreAuthCapture is used whenever delivery/shipment is
greater than 24 hours from the initial authorization. E-Commerce is not required to support Partial Approvals, but
Reversal/VoidSales are still supported in the event of CVV and AVS mismatch.

Batch Settlement Options: Host-Based Time or Merchant Initiated

General processing categories and capture methods

1. Host Based, Time-Initiated, Stream Capture
2. Host Based, Merchant-Initiated, Stream Capture
3. Host Based, Merchant-Initiated, Batch Capture

Although provisions are in place on Mercury's platform to accommodate terminal-based methods, Mercury is predominately a
“host-based” processing platform. That is, completed transactions are logged at Mercury's back end host pending settlement.
In a host based environment, merchants can never lose a batch due to their hardware failure or mistake. Being host-based,
gives POS developers the option to let Mercury initiate the settlement of the batch (termed: Host-based Time-Initiated or
Auto-Settle), or initiate the batch settlement locally and send a specific BatchClose command (Host-based Merchant-
Initiated).

Host-based Time-Initiated
Time-initiated batch close is recommended for all general retail, QSR/fast food, and ecommerce – verticals that do not typically
process tips or need to modify the original authorization amount. Time-initiated is an auto-settle function whereby all
captured/completed transactions are processed in one batch at 4:00 a.m. Eastern Standard Time (EST).

 Time-Initiated avoids the common issue of a merchant forgetting to close their batch, or having problems matching
up the totals and number of transactions.

 Time-Initiated does not require the developer to write code to support a BatchClose transaction.
 Time-Initiated batch maximum size is 1500 transactions.
 The 4:00 a.m. EST close time cannot be changed and may not be optimum for some West Coast, Hawaiian and

Alaskan merchants.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

23

Note: if retail merchants send a merchant-initiated close as part of their “end of day” procedure, they can still be set
up with the time-initiated close on the host end as a backup. If the batch was already closed prior to the 4:00 a.m. EST
cutoff, the host simply skips over the automatic close of an empty batch.

Host-based Merchant-Initiated
Merchant-initiated batch close is most appropriate for table service restaurants, clubs, and bars where tip adjustments
commonly occur, and for merchants who need local control over the timing of batch closing. Merchant-initiated means there is
a local merchant POS-side BatchClose command from the POS triggers the batch close process on the host end.

With merchant-initiated settlement:

 Merchants have local control of settlement times and therefore deposit patterns.
 Merchants who are open late or located on the West Coast, can process their tip adjustments and make sure that

all totals are correct before sending a BatchClose.
 Merchant must close their batch within 24 hours, or face downgrades (higher rates). This is because Authorization

codes lose their interchange authenticity increasingly over time and inherently carry higher risk. If a batch remains
open for five days, there is a built in protection at the host to stop accepting additional capture transactions, and
return the message “MUST BALANCE NOW” or “USE DUP THEN BAL.”

Merchant-initiated batch close uses a two step set of ADMIN transaction requests: BatchSummary and BatchClose

Merchant Initiated logic "BatchSummary" and "BatchClose" Settlement Sequence

1. Developer sends an ADMIN BatchSummary request

<?xml version="1.0"?>
<TStream>
 <Admin>
 <MerchantID>395347308=E2ETKN</MerchantID>
 <TranCode>BatchSummary</TranCode>
 <Memo>MPS Transact 1.2.0.5</Memo>
 </Admin>
</TStream>

2. Developer receives XML response confirming Batch Summary values:

<?xml version="1.0"?>
<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Success</CmdStatus>
 <TextResponse>OK</TextResponse>
 <UserTraceData></UserTraceData>
 </CmdResponse>
 <BatchSummary>
 <MerchantID>395347308</MerchantID>
 <OperatorID>test</OperatorID>
 <BatchNo>1225</BatchNo>
 <BatchItemCount>18</BatchItemCount>
 <NetBatchTotal>16.79</NetBatchTotal>
 <CreditPurchaseCount>6</CreditPurchaseCount>
 <CreditPurchaseAmount>42.25</CreditPurchaseAmount>
 <CreditReturnCount>5</CreditReturnCount>
 <CreditReturnAmount>31.54</CreditReturnAmount>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

24

 <DebitPurchaseCount>5</DebitPurchaseCount>
 <DebitPurchaseAmount>10.17</DebitPurchaseAmount>
 <DebitReturnCount>2</DebitReturnCount>
 <DebitReturnAmount>4.09</DebitReturnAmount>
 </BatchSummary>
</RStream>

3. Developer compares info between the local batch and the host’s BatchSummary

4. If totals match then developer sends Admin BatchClose request filling in the exact Amount and Count values
received from the BatchSummary:

<?xml version="1.0"?>
<TStream>
 <Admin>
 <MerchantID>395347308=E2ETKN</MerchantID>
 <OperatorID>test</OperatorID>
 <TranCode>BatchClose</TranCode>
 <BatchNo>1225</BatchNo>
 <BatchItemCount>18</BatchItemCount>//Note All counts as whole integers
 <NetBatchTotal>16.79</NetBatchTotal>//Note amounts are formatted as two decimal places.
 <CreditPurchaseCount>6</CreditPurchaseCount>
 <CreditPurchaseAmount>42.25</CreditPurchaseAmount>
 <CreditReturnCount>5</CreditReturnCount>
 <CreditReturnAmount>31.54</CreditReturnAmount>
 <DebitPurchaseCount>5</DebitPurchaseCount>
 <DebitPurchaseAmount>10.17</DebitPurchaseAmount>
 <DebitReturnCount>2</DebitReturnCount>
 <DebitReturnAmount>4.09</DebitReturnAmount>
 <Memo>MPS Transact 1.2.0.5</Memo>
 </Admin>
</TStream>

Note: Counts are formatted as integers, and amounts are formatted as two decimal places, including the decimal.

5. Response is returned from the processing server to confirm success of BatchClose with repeat of values

closed:

<?xml version="1.0"?>
<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Success</CmdStatus>
 <TextResponse>OK TEST</TextResponse>
 <UserTraceData></UserTraceData>
 </CmdResponse>
 <BatchClose>
 <MerchantID>395347308</MerchantID>
 <OperatorID>test</OperatorID>
 <BatchNo>1225</BatchNo>
 <BatchItemCount>18</BatchItemCount>
 <NetBatchTotal>16.79</NetBatchTotal>
 <CreditPurchaseCount>6</CreditPurchaseCount>
 <CreditPurchaseAmount>42.25</CreditPurchaseAmount>
 <CreditReturnCount>5</CreditReturnCount>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

25

 <CreditReturnAmount>31.54</CreditReturnAmount>
 <DebitPurchaseCount>5</DebitPurchaseCount>
 <DebitPurchaseAmount>10.17</DebitPurchaseAmount>
 <DebitReturnCount>2</DebitReturnCount>
 <DebitReturnAmount>4.09</DebitReturnAmount>
 <ControlNo>033204606 </ControlNo>
 </BatchClose>
</RStream>

Note: Counts are formatted as integers, and amounts are formatted as two decimal places, including the decimal.

Integration Best Practices: Safeguards should be implemented to remind the merchant that an open batch is pending and
needs to be settled daily. From developer to reseller to merchant, it is essential to train end-users of merchant-initiated
close POS systems to close their batches daily.

Settlement Capture: “Stream” or “Batch”
In standard retail environments, transactions are typically always “streamed” to Mercury and a single capture method is used
to compile, build and then settle the open batch.

In environments requiring tip modifications, Mercury recognizes two methods for compiling and building settlement files:
Stream Capture or Batch Capture. The choice of capture methods directly affects the batch close process at the end of day and
transaction adjustments or voids. A system may send authorization requests to the host and then regularly capture theses
throughout the business day. This is Mercury’s “stream method” of capture. Alternately, a system may send authorization
requests but then opt to void, adjust or modify the transaction in their local system before uploading the entire corrected
batch to the host as part of their end of day. This is the “Batch method” of capture.

Stream Capture
The POS continually sends the PreAuthCapture transaction to the host as soon as the tip amount is entered into the POS
system to finalize the ticket.

 In this approach, any subsequent deletions or corrections require sending to the host either a Reversal/VoidSale or

an Adjust.

Batch Capture
The POS waits until the end of day to send all the PreAuthCapture transactions to the host. The POS sends a PreAuth at the
time the card is swiped to authorize the transaction. When the merchant later enters the tip amount to finalize the
transaction, the POS holds this information locally until the end of the business day.

 Subsequent deletions or corrections can be handled locally and the POS never needs to send Adjust or VoidSale
transactions to the host unless a reversal is required.

 For the end-of-day batch close, with credit transactions in the batch (no PIN-based transactions), the developer can
make the system more resistant to transaction failures.

Developers Note: Batch capture method requires the use of a BatchClear. Great caution should be used in this
administering this ADMIN request to both prevent the loss of the captured batch at the host and clearing the batch
details locally. If used incorrectly or not at all duplications of entire batches can result.

End of Day Sequence in Batch Capture Environments:

1. POS sends a BatchClear command.
2. Send all the capture transactions, one right after the other.
3. Send a BatchSummary to verify the local number of transactions against the host number.
4. Send the BatchClose.
5. It is recommended to notify the merchant if the local and host totals did not match, but this should not prevent

the BatchClose.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

26

6. In the event there is a problem with the BatchClose, a BatchClear transaction should be again sent to the host (do
not clear the batch locally or when debits are present) to void out all of the PreAuthCaptures that were sent to
the host on the first attempt.

7. Start the BatchClose process from the beginning.

Integration Best Practices: All POS systems using the “Batch” close method must be set up with merchant-initiated close.
For end-of-day batch close with a composite batch including PIN based Debit transactions, proceed with the above steps
but do not send a BatchClear request either for step one or step six. Systems incorporating composite batches must
support an Invoice field. Mercury’s enhanced duplicate checking will catch any potential duplicates in the event it is
necessary to resend a batch fail.

Batch Capture Method and Mercury Stand-In Authorization
Mercury supports a fail-safe back-up feature in the event of a processing outage. During stand-in, transactions are routed
directly to Mercury’s Standin-in server where they are held, returning an approval response to the POS system with
MERCXX in the AuthCode field. This will continue until the internet traffic is restored. MercuryStand-In is seamless for
merchants with one exception: for batch capture environments, only the non-MERCXX transactions will successfully
capture upon batch close (the MERCXX will only settle after a successful BatchClose). During local and host batch total
reviews, it is important to only calculate the non-MERCXX local transaction totals against the host totals received from the
BatchSummary request. This will allow the batch to close successfully. Once the POS batch closes, Mercury then processes
the MERCXX captures, including tips, into a separate batch for the merchant.

Transaction Types and TranCode Detail

Below is an overview of supported Transaction Type and TranCodes used in retail and restaurant environments:

Credit: Sale
 Standard credit purchase authorization transaction. A Sale will authorize (confirm availability of funds) and complete the
transaction in one step. Upon approval, the Sale will be logged and added to the existing open batch for settlement.

Credit: PreAuth and PreAuthCapture
For details on authorizing and completing a transaction in two processing steps for use with tip modification see Preauth and
PreAuthCapture details below.

Credit: Return
A Return is an independent transaction used to credit a cardholder’s account in whole or in part when the original purchase
transaction was processed outside of the merchant’s current open batch. Use VoidSale/Reverse in the current open batch; use
Return for any previously settled transaction not in the current open batch.

Debit: Sale
Using a Mercury TDES key injected PIN entry device, a Debit sale is a real time debiting of the cardholders account. Requires
PIN entry. Swipe only. Debit sales cannot be voided or reversed, only returned (credited back to a cardholder’s account).
Debit Sales may also include cash back amount value as a sub amount of the total.

Debit: Return
Using a Mercury TDES key injected PIN entry device, a Debit Return is a real time crediting of the cardholder's account. This
is an independent transaction, not dependent on referencing a previously processed Debit Sale. Cannot be voided or
reversed. Returns do not allow Cash Back. Requires PIN entry. Swiped only.

Credit: VoiceAuth
A VoiceAuth is the request sent through the POS after the merchant has called in to obtain a voice authorization. Voice
authorization is used primarily when the host returns a decline message with a TextResponse referral such as “Call ND,” “Call
AMEX” or “Call Discover.” In these cases, the merchant contacts the automated voice authorization system (using the number
included in their MercuryPay Welcome kit) to obtains a six-digit authorization code (assuring that the card is good, and has
credit available). This voice authorization call only reserves funds for the merchant. In order to capture the transaction and get
funded, the merchant must send the VoiceAuth transaction through the POS (once connectivity has returned). A VoiceAuth

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

27

requires the previously obtained AuthCode given over the phone to be included in the transaction request. Also called a
"Force" in some processing networks.

VoidSale and Reversals
A VoidSale cancels an existing Credit Sale, VoiceAuth, PreAuthCapture or Return transaction in the merchant’s current open
batch. (Alternatively, if desired, a VoidReturn may be used exclusively for Return transactions.) VoidSales require the
reference number (RefNo) and AuthCode from the original transaction, as well as InvoiceNo, the full card number, expiration
date and authorized purchase amount. Note: even though a void “cancels” a transaction, the original transaction will still show
on the cardholder’s online banking statement for several business days, until their bank disposes of the authorization due to
non-settlement. VoidSales are communicated to the Processor. In order to communicate a VoidSale to the Issuing bank, a
Reversal is required.

Reversals are neither a Transaction Type nor a specific XML TranCode but instead refer to a practice within the card
processing industry of canceling a transaction request by communicating directly with the card issuing bank. Reversals
allow a previously authorized credit transaction to be cancelled at the Issuing bank level and release the held funds back to
the card holder’s account. The timeframe for this release of funds (the cardholder's "open to buy" amount) varies per card
brand regulations. MasterCard Reversals may take up to 2 hours. Visa may take up to 72 hours. By comparison, a standard
VoidSale may take up to 7-10 business days to release held funds.

Reversal= VoidSale+AcqRefData+ProcessData
Reversals are essentially card issuer level VoidSale transactions and may be used to reverse an existing Credit Sale,
VoiceAuth, PreAuthCapture and PreAuths. In order to process to the card issuer, a Reversal request must include all the
required VoidSale transaction data elements (AcctNo, Exp Date, InvoiceNo, RefNo, AuthCode, Purchase and Memo), uses
the TranCode=VoidSale plus requires two additional TranInfo elements also from the original transaction response:
AcqRefData and ProcessData. The inclusion of TranInfo: AcqRefData and ProcessData is what allows for the VoidSale
request to be sent to the Issuing bank and reversed. Additionally, in order for a reversal to be correctly processed, the
original transaction request must use a POS entry mode that “allows” for Partial Approvals. Transactions processed without
the PartialAuth=Allow tag cannot be reversed. (For E-Commerce developers, this "allow" feature is handled by the
MercuryPay servers with no additional tag requirements.)

Developers Note: It is also important to build in provisions in your system to allow only one reversal request attempt
be sent per transaction request. Multiple reversal requests may cancel the original reversal request altogether, impact
the cardholder’s account and merchant funding. If the original reversal request returns anything other than CmdStatus
of "Approved" and TextResponse of "REVERSED," do not attempt a reversal retry, but remove the AcqRef and
ProcessData tags are resend the request as a VoidSale only.

Reversal Support for PreAuth
 PreAuthCapture Reversals and Sale Reversals have been supported on the MercuryPay platform since 2009 and are a
required primary functionality of Flexible Spending Account (FSA) transactions and has been mandated for Partial Approval
for Card Branded Prepaid Debit cards.

Prior to August, 2011, a PreAuth processed over the MercuryPay platform could not be reversed. The PreAuth only held
funds, did not charge the card and did not have a reference number (RefNo) attached to it. PreAuths were required to be
captured in order to obtain a valid RefNo before any subsequent action could be taken to reverse the transaction. After
August 15, 2011, Pre-Authorizations may also be reversed. The XML data requirements follow the same pattern as the
PreAuthCapture Reversal and require only using a filler value in the RefNo field. For ease of coding and XML consistency,
Mercury recommends using RefNo=InvoiceNo for the RefNo value on all PreAuth reversals.

The PreAuth Reversal allows an authorized yet uncaptured PreAuth to be reversed at the Issuing bank, canceling the initial
PreAuth request and releasing the held "open to buy" funds to the card holder’s account. The card holder is never charged
and the “pending” timeframe that appears on the cardholder's bank statement is significantly reduced. Using this method,
an uncaptured PreAuth will not be subject to the Card Brand’s “Misuse of Authorization Network” fee.

PreAuth Reversals have many uses, particularly within hospitality verticals. PreAuth Reversals assist in Bar Tab handling as it
eliminates the steps in a developer’s coding logic required to capture the original first round PreAuth and then reverse it.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

28

PreAuths can simply be reversed, the next round added to the customer’s total and a new PreAuth requested until the final
tab is complete and ready for tip modification and completion/capture.

PreAuth Reversal XML Data Elements
PreAuth Reversals follow the same pattern as PreAuthCapture Reversals. RefNo field must be present in the request. Set
RefNo to mimic the InvoiceNo in the reversal request. PreAuth Reversals are supported with using MToken and or E2E
Encryption data elements as well.

PreAuth Reversal Required XML Example
PreAuth XML Request

<?xml version="1.0"?>
<TStream>
<Transaction>
 <MerchantID>595901</MerchantID>
 <OperatorID>Server1</OperatorID>
 <TranType>Credit</TranType>
 <PartialAuth>Allow</PartialAuth> //PartialAuth required for Reversal support
 <TranCode>PreAuth</TranCode>
 <InvoiceNo>38</InvoiceNo>
 <RefNo>38</RefNo> //Filler value RefNo=InvoiceNo for both PreAuth and Reversal request
 <Memo>MPSPOS</Memo>
<Account>//other options include using MToken RecordNo and Frequency or E2E Encryption data
 <Track2>4003000123456781=13055025432198712345</Track2>
</Account>
<Amount>
 <Authorize>3.00</Authorize>
 <Purchase>3.00</Purchase>//PreAuth always uses Authorize and Purchase amounts
</Amount>
</Transaction>
</TStream>

Approved PreAuth Processor Response
<?xml version="1.0"?>
<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>AP</TextResponse>
 <UserTraceData></UserTraceData>
 </CmdResponse>
 <TranResponse>
 <MerchantID>595901</MerchantID>
 <AcctNo>4003000123456781</AcctNo>
 <ExpDate>0513</ExpDate>
 <CardType>VISA</CardType>
 <TranCode>PreAuth</TranCode>
 <AuthCode>000067</AuthCode>
 <InvoiceNo>38</InvoiceNo>
 <OperatorID>Server1</OperatorID>
 <Memo>MPSPOS</Memo>
 <Amount>
 <Purchase>3.00</Purchase>
 <Authorize>3.00</Authorize>
 </Amount>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

29

 <AcqRefData>aNd5</AcqRefData>
 <ProcessData>|14|410100201000</ProcessData>
 </TranResponse>
</RStream>

Reversal Request (VoidSale + AcqRef + ProcessData) Request for PreAuth
<?xml version="1.0"?>
<TStream>
<Transaction>
 <MerchantID>595901</MerchantID>
 <OperatorID>Server1</OperatorID> //Optional
 <TranType>Credit</TranType>
 <TranCode>VoidSale</TranCode>//Use VoidSaleByRecordNo if sending Token
 <InvoiceNo>38</InvoiceNo>
 <RefNo>38</RefNo> //Required Reversal filler value RefNo=InvoiceNo
 <Memo>MPSPOS</Memo>
<Account>
 <AcctNo>4003000123456781</AcctNo>//use Token RecordNo and Frequency here
 <ExpDate>0513</ExpDate>
</Account>
<Amount>
 <Purchase>3.00</Purchase>
</Amount>
<TranInfo> //required data to trigger Reversal
 <AcqRefData>aNd5</AcqRefData> //AcqRefData code to maximum length = 200
 <ProcessData>|14|410100201000</ProcessData> //Routing data that reflects POS Entry mode
 <AuthCode>00007</AuthCode>
</TranInfo>
</Transaction>
</TStream>

Approved Reversal (VoidSale) Processor Response

<?xml version="1.0"?>
<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>REVERSED</TextResponse>
 <UserTraceData></UserTraceData>
 </CmdResponse>
 <TranResponse>
 <MerchantID>595901</MerchantID>
 <AcctNo>4003xxxxxx56781</AcctNo>
 <ExpDate>XXXX</ExpDate>
 <CardType>VISA</CardType>
 <TranCode>VoidSale</TranCode>
 <AuthCode>00007</AuthCode>
 <CaptureStatus>Captured</CaptureStatus>
 <RefNo>38</RefNo>
 <InvoiceNo>38</InvoiceNo>
 <OperatorID>Server1</OperatorID>
 <Memo>MPSPOS</Memo>
 <Amount>
 <Purchase>3.00</Purchase>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

30

 <Authorize>3.00</Authorize>
 </Amount>
 <AcqRefData>K</AcqRefData>
</TranResponse>
</RStream>

PreAuthCapture and VoidSale Failover in Event of Unsuccessful Reversal
Reversals from time to time may be rejected, unsuccessful or return a declined response. The expected approval response
on reversals includes CmdStatus = Approved, TextResponse = REVERSED. If the PreAuth Reversal returns anything but
CmdStatus = Approved, with TextResponse = REVERSED, developers will need to code for a failover procedure to capture
the PreAuth and process a normal VoidSale without the additional reversal data elements.

For testing failed reversal responses, developers may use one of the following Mercury test cards with a trigger amount of
$24.01. The transaction will be approved on the PreAuth request and then return a failed response on the reversal attempt
indicating the need to process a PreAuthCapture followed by a standard VoidSale without Reversal data elements.

Test Card Amount Track 2 Data Exp Date

MasterCard 1 24.01 ;5439750001500305=15125025432198712345? 12/15

MasterCard 2 24.01 ;5439750001500248=15125025432198712345? 12/15

Visa 24.01 ;4005550000000480=15125025432198712345? 12/15

PreAuth Reversal Summary
 Add the <PartialAuth>Allow tag to the original request ensure correct POS Entry mode
 Include the correct AcqRefData and Process Data to your VoidSale request so that the

transaction is communicated to the Issuing bank
 Code to only allow for one Reversal per transaction
 Follow the same XML reversal pattern accept use InvoiceNo as filler data for RefNo
 Check CmdStatus and TextResponse for Approved/REVERSED
 Process normal VoidSale if reversal response is anything other than Approved/REVERSED.

PreAuth and PreAuthCapture or Sale and Adjust: Two-Step, Tip-Modified Transactions
Restaurants requiring tip modification use a two-step transaction sequence: a card is first authorized for a base amount (pre-
tip), and then finalized with the addition of the tip amount. This can be accomplished by using one of two pairs of transactions:
either the PreAuth requiring a corresponding PreAuthCapture or Sale and, when needed, an Adjust. Where the PreAuth is
always dependent on a corresponding PreAuthCapture for completion and funding of the transaction, Sales are not dependent
on an Adjust for finalization.

The PreAuth/PreAuthCapture transaction sequence is standard in table service restaurants where the majority of the
transactions will be finalized with a tip modification.

Integration Best Practices: In quick serve, fast-paced restaurant environments where an added gratuity is less common,
the Sale and Adjust transaction sequence is most efficient. Using Sale and, when needed, an Adjust, the majority of
transactions are finalized in one step and a clerk or cashier only needs to “re-touch” an occasional transaction for
adjustment.

Integration Best Practices: Adjusts may also be implemented in table service restaurant environments as well, as they can
be used easily to adjust an incorrect transaction amount. The use of Adjusts in this way saves the need to re-authorize a
card which freezes additional funds on the cardholder’s account.

PreAuth and PreAuthCapture
The PreAuth/PreAuthCapture sequence authorizes the initial purchase amount with the PreAuth, and then allows for tip
modification to finalize and capture the transaction with the PreAuthCapture. The PreAuthCapture is what actually gets the
merchant funded; the PreAuth only holds funds on the cardholder account.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

31

PreAuthCapture Details: The capture must not send track data from the original PreAuth swipe. The PreAuthCapture
transaction needs to include the following for a fully qualified (best rate) transaction:

 the account number
 expiration date
 final purchase amount (or original purchase amount when supplying gratuity)
 original authorization amount
 gratuity/tip amount (if applicable)
 authorization code from the original PreAuth response
 Acquirer Reference Data (AcqRefData) from in the original PreAuth response

Important PCI PA-DSS Note: Storage of full card holder Track Data in any form is considered non-compliant with the
Payment Card Industry Council’s Payment Application Data Security Standard PA-DSS. PreAuthCapture and Adjust
requests may never be submitted with full track data. Mercury’s support of MToken technology eliminates the need to
store sensitive card data.

The following details the XML formatting of a swiped PreAuth and subsequent PreAuthCapture request and response. This
example uses an encrypted initial request and subsequent tokenization processing sequence.

Swiped Encrypted PreAuth Request:
<?xml version="1.0"?>
<TStream>
 <Transaction>
 <MerchantID>395347308=E2ETKN</MerchantID>
 <TranType>Credit</TranType>
 <TranCode>PreAuth</TranCode>
 <InvoiceNo>16</InvoiceNo>
 <RefNo>16</RefNo>//use RefNo=InvoiceNo on PreAuth requests
 <Memo>MPS Example XML v1.0</Memo>
 <PartialAuth>Allow</PartialAuth> //Required to "Allow" partial approvals

<Frequency>OneTime</Frequency>//use to request a Token for "one time" use (6 months)
<RecordNo>RecordNumberRequested</RecordNo>

 <Account> //use for encrypted data elements in place of Track 1 or Track2
 <EncryptedFormat>MagneSafe</EncryptedFormat>

<AccountSource>Swiped</AccountSource>
<EncryptedBlock>F40DDBA1F645CC8DB85A6459D45AFF8002C244A0F74402B479ABC99

15EC9567C81BE99CE4483AF3D</EncryptedBlock> //form P2PE, always use Track2 block
<EncryptedKey>9012090B01C4F200002B</EncryptedKey>

</Account>
 <Amount>
 <Purchase>2.00</Purchase>//Purchase=Authorize on request
 <Authorize>2.00</Authorize>
 </Amount>
 </Transaction>
</TStream>

PreAuth Transaction Response:

<?xml version="1.0"?>
<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>AP</TextResponse>
 <UserTraceData></UserTraceData>
 </CmdResponse>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

32

 <TranResponse>
 <MerchantID>395347308</MerchantID>
 <AcctNo>400300XXXXXX6781</AcctNo>//Returned truncated with encryption and token
 <ExpDate>XXXX</ExpDate>//Returned truncated (may be obtained from request for later use)
 <CardType>VISA</CardType>
 <TranCode>PreAuth</TranCode>
 <AuthCode>000067</AuthCode>
 <InvoiceNo>16</InvoiceNo>
 <OperatorID>MPS Operator</OperatorID>
 <Memo>MPS Example XML v1.0</Memo>
 <Amount>
 <Purchase>2.00</Purchase>
 <Authorize>2.00</Authorize>
 </Amount>
 <AcqRefData>aNd5</AcqRefData>
 <RecordNo>fbouwsq9TPgVRCZwImSsdmngVsaEwCXjIhESEAAjEAB3qQ==</RecordNo> //token
data to be used in PreAuthCapture request.
 <ProcessData>|14|410100201000</ProcessData>
 </TranResponse>
</RStream>

PreAuthCapture (ByRecordNo) request using token:

<?xml version="1.0"?>
<TStream>
 <Transaction>
 <MerchantID>395347308=E2ETKN</MerchantID>
 <TranType>Credit</TranType>
 <TranCode>PreAuthCaptureByRecordNo</TranCode>
 <InvoiceNo>16</InvoiceNo>
 <RefNo>16</RefNo> //use RefNo=Invoice on request
 <Memo>MPS Example XML v1.0</Memo>
 <PartialAuth>Allow</PartialAuth>// not required in e-comm

<Frequency>OneTime</Frequency>
<RecordNo>fbouwsq9TPgVRCZwImSsdmngVsaEwCXjIhESEAAjEAB3qQ==</RecordNo>

 <Amount>
 <Purchase>2.00</Purchase>
 <Authorize>2.00</Authorize>//still equals the original purchase
 <Gratuity>0.50</Gratuity>//add gratuity tag
 </Amount>
 <TranInfo>
 <AuthCode>000067</AuthCode>//use originally returned AuthCode
 <AcqRefData>aNd5</AcqRefData>//code to support up to max. 200 for AcqRefData
 </TranInfo>
 </Transaction>
</TStream>

PreAuthCapture response:

<?xml version="1.0"?>
<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

33

 <TextResponse>AP</TextResponse>
 <UserTraceData></UserTraceData>
 </CmdResponse>
 <TranResponse>
 <MerchantID>395347308</MerchantID>
 <AcctNo>400300XXXXXX6781</AcctNo>
 <ExpDate>XXXX</ExpDate>
 <CardType>VISA</CardType>
 <TranCode>PreAuthCapture</TranCode>
 <AuthCode>000067</AuthCode>
 <CaptureStatus>Captured</CaptureStatus>
 <RefNo>0022</RefNo>
 <InvoiceNo>16</InvoiceNo>
 <OperatorID>MPS Operator</OperatorID>
 <Memo>MPS Example XML v1.0</Memo>
 <Amount>
 <Purchase>2.00</Purchase>
 <Authorize>2.50</Authorize>//total will be returned from processor
 <Gratuity>0.50</Gratuity>
 </Amount>
 <AcqRefData>KaNd5</AcqRefData>
 <RecordNo>js71hlxtTuEQKmBah3++tPQOxfA4J5bCIhESEAAjEAB3wQ==</RecordNo> //note
"fresh" Token RecordNo is returned
 <ProcessData>|14|410100201000</ProcessData>
 </TranResponse>
</RStream>

Integration Best Practices: When formatting PreAuth and PreAuthCapture, observe the following:
 In the PreAuth request, submit Track 1 or 2 data or encrypted Track2 data and the Authorize amount always equals

the Purchase amount. This full Track or Encrypted block data may NEVER be stored. PAN may be stored with strong
encryption or request a token for subsequent use in the capture.

 Since 2006, Visa no longer allows the over-authorization of credit cards for restaurants. During the PreAuth
transaction, Visa requires the authorize amount to be equal to the purchase amount. Failure to comply may result in
fines assessed against the merchant, starting at $5,000 for the first infraction.

 PartialAuth=Allow is now mandated by the card brands for all PreAuths and PreAuthCaptures in standard restaurant
environments.

 In the PreAuthCapture request, the Track data may not be resubmitted. Instead, the AcctNo and ExpDate or, as in the
above example, RecordNo, are submitted along with the AcqRefData and AuthCode returned in the PreAuth approval
response.

 In the PreAuthCapture request, the purchase amount total does not include the tip amount.
 Once a PreAuth has been approved, sending the PreAuthCapture will fund the merchant.

Sale and Adjust for Quick Serve Restaurants (QSR)
The Sale and Adjust transaction sequence is most appropriate for quick serve restaurants/fast food where tips are rare. They
occasionally occur during deliveries or for a catering event, etc. The advantage of using Sale/Adjust here is that all Sales are
finalized upon Sale completion (like a PreAuth and PreAuthCapture rolled into one step). It would be a great inconvenience to
quick serve clerks to have to “re-touch” every PreAuth transaction, in order to close the ticket with zero tip. Using Sale/Adjust,
a clerk only needs to “re-touch” (Adjust) the occasional transaction.

QSR Guidelines

 Adjust must include the RefNo and AuthCode from the original Sale transaction
 QSRs that take phone orders for deliveries will need a POS capable of handling multiple merchant ID numbers.
 Use of MToken: To eliminate the need to store card data for Adjusts, use the returned RecordNo (token) and

Frequency to process all adjust transactions.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

34

Adjust
The Adjust transaction changes the amount data fields for a transaction which was already captured in the current open
batch. It requires the reference number (RefNo) from the original sale as well as AuthCode, the full card number and expiration
date. The adjusted purchase amount replaces the Purchase amount data in the original transaction, using the original
authorization code. Note: Adjust transactions cannot be reversed. Developers should code to only VoidSale an adjusted
transaction.

For tip adjustments, a Gratuity tag <Gratuity>0.00</Gratuity> can be added to an Adjust with the gratuity amount value. The
Authorize amount should equal the original Authorized amount. The Gratuity element allows the tip adjustment to be pulled
as a reporting feature in MercuryView™ and assists with merchant reconciliation.
Request Amount values:

 <Amount>

 <Purchase>1.23</Purchase>

 <Authorize>1.23</Authorize>

 <Gratuity>1.00</Gratuity>

 </Amount>

Response Amount values:

 <Amount>

 <Purchase>1.23</Purchase>

 <Authorize>2.23</Authorize> //MercuryPay servers will total the Authorize amount.

 <Gratuity>1.00</Gratuity>

 </Amount>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

35

Credit Card Branded PrePaid Debit Cards: Partial Authorization and Reversal Support

Partial authorization and reversal support was added to the MercuryPay platform in response to credit card brand mandates
effective May, 2011. Though the focus is on credit card branded prepaid debit cards, supporting partial authorizations is required
for all POS systems sending Credit Sale and/or PreAuth and PreAuthCapture transactions for all merchant categories except for
Kiosk, Customer Attended Terminals (CAT) and Car Washes. Reversals and failover to VoidSale is also required. Reversals are
processed to the card issuer allowing for a more timely release of funds back to the cardholder. Issuers may elect to decline a
reversal in which case a standard host VoidSale is required.

Partial Authorization Details: "allow"confirm authorized amountprompt balance duereverse/void if necessary
<PartialAuth>Allow</PartialAuth> is required to be added to all Credit: Sale and/or PreAuth and PreAuthCapture
transactions for all merchant categories except for Kiosk, CAT and Car Washes. The card brand mandate is focused on
allowing card brand issued prepaid debit cards to be partially approved and to bring any available balance to 0.00. The
"Allow" tag enables the transaction request, if it is a prepaid debit card, to be compared with the issuer's records to
confirm the available balance. As these function as real time debited cards, only the available balance can be used. If
the available balance is less than the requested purchase amount then this available amount will returned in the
Authorize Amount. If the PartialAuth tag is not used, and the available balance is less than the requested purchase
amount, these transactions will decline—and this is what the mandate is attempting to correct. Integrators are
required to include the PartialAuth=Allow tag and check TextResponse and Authorize Amount to confirm purchase
amount is correct.

If CmdResponse: TextResponse returns "PARTIAL AP" the Authorize amount will be less than the original Purchase
amount. In this case, the POS will subtract the Authorize amount from the original Purchase amount and prompt end
user for "balance due" with a second form of payment.

If cardholder cannot pay balance due amount, a reversal/VoidSale must be sent from POS to put amount back on card.

POS systems will need to store both <AcqRefData> and <ProcessData> from Sale and PreAuth/PreAuthCapture
responses for real-time reversal support

Note: Gratuity should not be supported with any transaction that receives a Partial AP response.

Partial Authorization XML Example Sale Request on an encrypted request using a "trigger" amount of 23.54

<?xml version="1.0"?>
<TStream>
 <Transaction>
 <MerchantID>395347308=E2ETKN</MerchantID>
 <TranType>Credit</TranType>
 <TranCode>Sale</TranCode>
 <InvoiceNo>21</InvoiceNo>
 <RefNo>21</RefNo>
 <Memo>MPS Example XML v1.0</Memo>

<Frequency>OneTime</Frequency>
<RecordNo>RecordNumberRequested</RecordNo>

 <PartialAuth>Allow</PartialAuth>//Required "Allow" tag
 <Account> //Encrypted data shown here in place of <Track1> or <Track2>
 <EncryptedFormat>MagneSafe</EncryptedFormat>

<AccountSource>Swiped</AccountSource>
<EncryptedBlock>2F8248964608156B2B1745287B44CA90A349905F905514AB

E3979D7957F13804705684B1C9D5641C</EncryptedBlock> //Use Track2 only
<EncryptedKey>9500030000040C200026</EncryptedKey>

</Account>
 <Amount>
 <Purchase>23.54</Purchase>//"Trigger" Amount used with this card

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

36

 </Amount>
 </Transaction>
</TStream>

Partial Authorization Sale Response
Note in the response below, the transaction approves with a PARTIAL AP (partial approval) and authorized for $20.00
(less than the original purchase amount).

<?xml version="1.0"?>
<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>PARTIAL AP</TextResponse>//Note TextResponse
 <UserTraceData></UserTraceData>
 </CmdResponse>
 <TranResponse>
 <MerchantID>395347308</MerchantID>
 <AcctNo>400555XXXXXX0480</AcctNo>
 <ExpDate>XXXX</ExpDate>
 <CardType>VISA</CardType>
 <TranCode>Sale</TranCode>
 <AuthCode>VI2000</AuthCode>
 <CaptureStatus>Captured</CaptureStatus>
 <RefNo>0026</RefNo>
 <InvoiceNo>21</InvoiceNo>
 <OperatorID>MPS Operator</OperatorID>
 <Memo>MPS Example XML v1.0</Memo>
 <Amount>
 <Purchase>23.54</Purchase>
 <Authorize>20.00</Authorize>//Compare amounts
 </Amount>
 //data below to be saved for potential reversal if necessary and used in <TranInfo>
 <AcqRefData>aEb051356090583661cRBBCd5e10j100590135640061590k0057840C00000000235
4lA m000005</AcqRefData> //must be saved for potential reversal if necessary

 <RecordNo>ewNvAAvYCYIFfRbS06i1ssdjV+8YOv2nIhESEAAjEAB3yg==</RecordNo>//Token
 <ProcessData>|00|410100201000</ProcessData>
 </TranResponse>
</RStream>

Reversal Support Required: VoidSale plus AcqRefData and ProcessData
In the event a cardholder cannot pay for the remaining balance from a partial authorization, a Reversal/VoidSale is
required to be sent to the issuer. A Reversal, though not an actual TranCode, is distinguished from a standard VoidSale
because it is sent with transaction routing data that allows it to process directly to the card issuing bank. This additional
transaction info (TranInfo) includes AcqRefData and ProcessData.

Reversals are supported by Visa, MasterCard, and Discover Card. AMEX does not support reversals at this time.
However, for coding consistency, integrators may include AcqRefData and ProcessData in AMEX VoidSale requests. It
will be treated as a standard VoidSale.

Note that the time for the reversal to actually complete (that is, so that the cardholder’s available balance reflects the
added reversal amount) is issuer dependent and varies widely. Card brand regulations also vary as to the allowable

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

37

timeframe for reversal to hit the cardholders account. For example, MasterCard this is 2 hours. For Visa, this may take
up to 72 hours. Standard Host side VoidSale may take 5 to 7 business days to process.

Reversal Summary and XML example
 Reversal TranCode = <VoidSale>
 The Purchase amount in the Reversal request will be the Authorize amount sent in the original transaction

response. (In our example above, $20.00.)
 In a Reversal request, send only AcctNo and ExpDate or the Token/RecordNo. Full Track data cannot be sent.
 AcqRefData and ProcessData from the original transaction response must be provided in the Reversal request at

the <TranInfo> level. The AcqRefData and ProcessData fields elicit the VoidSale to be sent as a Reversal. Taking
out these fields will result in a normal VoidSale request.

 Finally, if a CmdStatus= Approved and TextResponse=REVERSED message is not returned in the reversal request, a
standard VoidSale should be immediately sent without the AcqRefData and ProcessData tags.

Example Non-Encrypted Sale Reversal Request

<?xml version="1.0"?>
<TStream>
 <Transaction>
 <MerchantID>595901</MerchantID>
 <TranType>Credit</TranType>
 <TranCode>VoidSale</TranCode> //Reversal also uses VoidSale
 <RefNo>0021</RefNo> //must use actual RefNo returned from Sale; not filler value
 <InvoiceNo>111</InvoiceNo>
 <Memo>MPSTest</Memo>
 <Account>
 <AcctNo>6011900212345677</AcctNo> //AcctNo and Exp Date only or Token
 <ExpDate>1215</ExpDate>
 </Account>
 <Amount>
 <Purchase>20.00</Purchase> //Purchase amount is Authorized amount
 </Amount>
 <TranInfo> //Includes original AcqRefData, ProcessData and AuthCode

<AcqRefData>Kb055003432100485c0000e10j100485100203094755k0056840C0000000
02307</AcqRefData>
<ProcessData>|00|410100701000</ProcessData>
<AuthCode>DI2000</AuthCode>

 </TranInfo>
 </Transaction>
</TStream>

Sale Reversal Response

<?xml version="1.0"?>
<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>REVERSED</TextResponse>
 <UserTraceData></UserTraceData>
</CmdResponse>
<TranResponse>
 <MerchantID>595901</MerchantID>
 <AcctNo>6011900212345677</AcctNo>
 <ExpDate>1215</ExpDate>
 <CardType>DCVR</CardType>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

38

 <TranCode>VoidSale</TranCode>
 <CaptureStatus>Captured</CaptureStatus>
 <InvoiceNo>111</InvoiceNo>
 <Memo>MPSTest</Memo>
 <Amount>
 <Purchase>20.00</Purchase>
 <Authorize>20.00</Authorize>
 </Amount>
 <AcqRefData>K</AcqRefData>
</TranResponse>
</RStream>

Testing Partial Authorization and Reversals using specific trigger amount:

Test Card Number Track2 Data Exp Date Trigger Amt Partial Auth

4005550000000480 4005550000000480=15125025432198712345 12/15 23.54 20.00

5439750001500248 5439750001500248=15125025432198712345 12/15 23.62 20.00

6011900212345677 6011900212345677=15125025432198712345 12/15 23.07 20.00

 Note: MC PartialAuth test use after 2pm EST. Use OperatorID of ‘test’ for DISC and MC test cards

Physical test cards are available from your Developer support representative.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

39

End-to-End Encryption (E2E) and Tokenization (MToken™)

General Overview

End-to-End Encryption/Point-to-Point
End-to-End Encryption (E2E), also known as Point-to-Point Encryption (P2PE), encrypts cardholder data from the point of
entry--the instant a card is swiped or manually keyed. As a PA-DSS validated and listed level one service provider, Mercury
is the end point of the E2E pathway using our secure decryption service to validate, decrypt and process the data.
Mercury's supported encryption peripherals are injected by TG3 validated injection vendors using custom encryption keys
that can only be decrypted in our state of the art facilities.

MToken
MToken is Mercury’s proprietary technology that replaces sensitive cardholder response data with non-sensitive token
record number for POS system storage and subsequent use. Using token records reduces the risk, cost, and complexity of
credit card processing. The token record data is returned to the POS system along with approval of the initial transaction.
The token can then be used to perform any subsequent transaction if required or stored securely for recurring billing.

E2E and MToken Combined
Combining Mercury’s E2E encryption with tokenization technology provides all the benefits of both for the best overall card
data security solution. By using end-to-end encryption for initial card data entry and storing a token for subsequent
transactions, the point-of-sale system is removed from the most significant portion of compliance requirements.

 Mercury’s end-to-end encryption service eliminates the risks involved with cardholder data starting from the point
of card entry in the MagTek reader directly to the MercuryPay platform.

 Mercury’s tokenization processing replaces the card data with a token record, helping merchants achieve PCI
compliance and enabling them to enjoy features such as recurring billing, card on file, and gratuity handling.

E2E Device Integration—Supported Peripherals
Mercury's encryption/decryption platform supports all MagTek’s IPAD®, IPAD-SC, IPAD-KB, Dynamag, BulleT™ for Window
based Smartphone OS development, iDynamo® for Apple iOS based development) and IDTech's Sign & Pay™ and
SecureMag™.

The E2E encryption integration starts with selecting an encryption device that best suits your market’s need. Mercury’s
initial entry into the encryption arena included MagTek’s MagneSafe family of encryption devices which encrypts card data
directly from the read-head upon swipe. The IPAD, IPAD-SC (signature capture) and IPAD-KB (keyboard emulation) allow
for swiped and manual entry encryption in addition to doubling as a U.S. PIN debit devices.

The MagneSafe technology is also available in several card reader or card reader insert models but do not allow for manual
input capability: The Dynamag is a programmable swipe reader available in HID and KB variations and does not allow for
manual entry. For mobile applications, Mercury supports the iDynamo for Apple iPhone and iPad iOS applications and the
BulleT for Droid and Windows Smart Phones based mobile applications. These mobile readers do not allow for manual
entry support. If your business environment does not accept manual entered transaction data you may be able to use
MagneSafe card readers or inserts.

Two HID encryption devices from IDTech also support Mercury's encryption platform: the SecrureMag encrypted swiper (no
manual entry) and the Sign & Pay with encrypted manual entry, US PIN Debit and signature capture capability.

Encryption Device Integration: First Steps

1. Programming documentation and APIs are available directly via device manufacturer's web site. For MagTek,

many development tools are password protected and require a Non-Disclosure Agreement (NDA) to be in place
prior to access. IDTech, at this time, does not require an NDA. Support during this initial integration phase will be
coordinated directly with the device manufacturer. For IDTech Sign & Pay, and SecureMag, Mercury can also

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

40

supply sample classes written in Visual Studio 10 C# that illustrate an approach to coding to the device with simple,
and functional transaction paths in a non-customer select tender manner.

2. Your Mercury developer support or channel representative will assist your access to available documentation and
a designated encryption device point of contact. Any questions related to manufacturer's APIs or documentation
can then be directed to your specific contact.

3. Once developers have completed the initial API phase to the encryption device, your Mercury developer support
representative will act as your primary liaison for continuing the integration phase to Mercury.

4. Mercury’s testing platform fully supports all E2E encryption/decryption behavior (replicating all production side
behavior) including expected production response messaging.

5. E2E enabled test Merchant IDs will be available to use with your E2E testing (as well as tokenization and E2E and
Tokenization combined). You will not be able to use existing non-E2E enabled Mercury developer MIDs. Mercury
will be stocking pre-injected test IPADS for developer’s.

Encrypted Data Output Details
Developers will have access to non-sensitive card data and encrypted data:

1. Non Sensitive card data will be returned with first six and last four of the card number, cardholder name and

expiration date. Cardholder name can be pulled into transaction requests. With MagTek IPADs and IDTech
devices, all Track data is masked with 0s. (MagTek also uses a check digit for MOD10 calculation. MagTek iDynamo
models mask using a *.) Non-sensitive data allows developers to pull information for internal reporting, logs,
receipt, etc.

2. Encrypted Track 1 data (EncryptedBlock) and the key serial number or KSN (EncryptedKey) will be returned. Always

use Track2 encrypted data when sending the encrypted transaction request to Mercury.

Output format comparison
Here is a comparison of a Visa Test card first swiped in a standard keyboard emulation reader and then the encrypted
KB reader. Track1 is in blue (remember do not use), Track2 in red and KSN in green. This output format will vary in the
HID models

 Standard keyboard emulation reader:
%B4003000123456781^TEST/MPS^13051010000000000?;4003000123456781=13055025432198712345?

Example MagTek Encrypted KB Dynamag Output:
%B4003000050006781^TEST/MPS^13050000000000000?;4003000050006781=13050000000000000000?|0600|9
6F7CCEB8461264BB3CB3F4539163C8C59E87F2B16F1E876C778A3A15CF840422FAFF02FA2E27FD4DBC29B385350
69B9|BDEC23AAA899006C36843F14E0F6A6472C8CDF81271764E160B455FC55AA5DD05F2AD04769614A91||614
02200|B54A267EAAEB5B9A85212421B09BEA3B6F4AC894DBDE5A246E2780F461E63C6175C92D0F62703CAC551A
206D66760744172CF7E14A223605|B01F8C4072210AA|BF6325ABD6A63EE7|9012090B01F8C4000007|F7D7||00
00

Example IDTech Sign & Pay HID Output and detail:

02E600801F2E2700039B252A3430303330302A2A2A2A2A2A363738315E544553542F4D50535E313330352A2A2A
2A2A2A2A2A2A2A2A2A2A3F3B3430303330302A2A2A2A2A2A363738313D313330352A2A2A2A2A2A2A2A2A2A2A
2A2A2A2A2A3F898F3F594524E62BECEE85A1DBF7A2BFA0D19986BD0177F38783FAB165C91D941EF191F3CF7E23
D05CB43D929CE115BE4CEA52CA2BF26F4780BCFED3C637215471D4A475F40882863FD64F2F87AE76F8610F1D8B
7904BC4870F35020B5A60E21308EEA511E12543925E98352F5B3212D30F779DD5A3264C098675894FBA7D054629
949012800000000054CF403

Break down and explanations:

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

41

02 STX
E600 Total Len (230 bytes)
80 Card type (ISO / Bank Card; Enhanced Mode)
1F Track Status (T1,T2 decoded, T3 not exist)
039B (T1,T2 Mask / Clear present; KSN present,T2,T2 encrypted data present)
2E2700 Track Length (T1 = 46, T2 = 39, T3 = 0)
252A3430303330302A2A2A2A2A2A363738315E544553542F4D50535E313330352A2A2A2A2A2A2A2A2A2A2A2A2
A3F
(T1 mask data: %*400300******6781^TEST/MPS^1305*************?)
3B3430303330302A2A2A2A2A2A363738313D313330352A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A3F
(T2 mask data: ;400300******6781=1305****************?)
898F3F594524E62BECEE85A1DBF7A2BFA0D19986BD0177F38783FAB165C91D941EF191F3CF7E23D05CB43D929C
E115BE (T1 Encrypted data, 6 block, 48 bytes)
4CEA52CA2BF26F4780BCFED3C637215471D4A475F40882863FD64F2F87AE76F8610F1D8B7904BC48
(T2 Encrypted data, 5 block, 40 bytes)
70F35020B5A60E21308EEA511E12543925E98352 (20 bytes T1 hash)
F5B3212D30F779DD5A3264C098675894FBA7D054 (20 bytes T2 hash)
62994901280000000005 (10 Bytes KSN)
4CF403 LRC, CheckSum and ETX

Developer Note: The MagTek IPAD-KB (Key board) requires no HID interaction or commands and returns a numbered,
pre-parsed output directly from the device. Additional details and configuration guidelines available from MagTek. As
an example, here is a Debit request response from the IPAD-KB: (The required EncryptedBlock and Key are fields 3 and
11; the debit DerivedKey and PINBlock are fields 13 and 14. Note fields 6 and 7 return truncated data ("0" as masking+
check digit) for use with internal report or card holder maintenance files.)

0~IPAD100KB|24~4353047B121C130A|1~21|2~5E97C48238415ACB9C82F4E8E71746127881B8A71FFBB3CC1DCE4B5B
83562A871DCC5025C21ECE1BF037C5B069BEA18E|3~ACFBE99088544FDE8393AF9FF2817F5D2E28F99590F7C82C4870
96465107966E907AA64B45792E4A|4~|5~1F4E65350FD407CACFDC01C9964AC771C88AA7546CC2E553912DA608216A
9519675C6FF38FDA2DAD94F0383062AB6A414F39C42E623568D0|6~%B4003000001006781^TEST/MPS^13050000000
000000?|7~;4003000001006781=13050000000000000000?|8~|9~00000000|10~000001|11~9500570000008720001
D|12~00002200|13~9A006300000009200004|14~8F8A60DFECF190AA|

Swiped Track data: Mercury’s decryption service requires that only the Track2 string be sent in the EncryptedBlock.

Debit PIN Entry lengths: PIN entry lengths may be set from 4-12 although ISO recommendations limits the length to 6
digits. Contact your device manufacturer specifications for details.

Manual/Keyed Input and Output details
One of the essential features of the MagTek IPAD and IDTech Sign & Pay technology is that manually hand key entered
transactions are supported. Data can be entered into the keypad using the following parameters:

a. MAGTEK: Account number (min length = 9, max length = 19) IDTECH (Min=6 Max=23)
b. Expiration date (minimum length=maximum length = 4, input as MMYY)
c. Card verification code (minimum length = 3, maximum length = 4)

The devices output formats all manually entered card information in unique “pseudo Track-like” strings, similar to
Track1 and Track2 data. The output will format card data as follows where 5=Card Number, 3=Exp Date and 4=CVV/CID
Data:
Track1 format: %M5555555555555555^MANUAL ENTRY/^33330000004444000000?
Track2 format: ;5555555555555555=33330000004444000?

 Although the device will supply developers with both Track data formats, Mercury decryption service
requires the Track2 format be used for manual entry.

 Mercury will parse out the appropriate data fields for processing.

 Expiration Date is changed to Track ISO standard of YYMM

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

42

 No additional entry for CVV2/CID is required.

 Additional fraud protection controls using Mercury’s Address Verification Service (AVS) for manual entry is
still recommended. AVS data from the encryption device is unsupported at this time and must be
supplied by the POS System at the time of the transaction request.

 If no Expiration Date or Security code data is required (for EBT and Gift/PrePaid cards) developers may use
filler values of 0 and pass this in the encryption block.

Manually entered PrePaid/Gift cards
The devices allow for manually entered PrePaid/Gift cards. Account lengths vary: Magtek allows : 9-19 and IDTech allows: 6-
23. Input coding will need to be adjusted for Expiration Date and CVV2/CID prompts. ExpDate and CVVData for
Prepaid/Gift cards when using the Magtek encryption devices is not supported at this time.

Developer Note: Device Status messaging and EncryptionBlock response
Interacting with the MagTek IPAD devices returns a status value for each function call as in, for example, CardStatus,
DeviceStatus, OpStatus. Most return a value of ‘0’ on success where other integer values indicate an error condition. It is
important to check these status responses and confirm that all data is in place in your xml request before sending the
transactions.

Mercury Processing E2E Specifications

XML Account level elements in the transaction requests
For all E2E encrypted transaction requests, four data elements must be added on the Account level of the transaction
request"

<Account>
 <EncryptedFormat>MagneSafe</EncryptedFormat>
 <AccountSource>Swiped</AccountSource>
 <EncryptedBlock>EncryptedBlock</EncryptedBlock>
 <EncryptedKey>EncryptedKey</EncryptedKey>
</Account>

Element Req Min Max Type Description
Account:EncryptedFormat

1
Y 1 25 AN Encryption format:“MagneSafe”

Account:AccountSource Y 1 25 AN Source of encrypted block: “Swiped”, “Keyed”, “Contactless’

Account:EncryptedBlock Y 1 224 AN Encrypted Track1, Track2 or Manual data from IPAD

Account:EncryptedKey

Expected Test Key Serial
Numbers

Y 20 20 AN Derived Unique Key from Secure Card Reader
Test E2E KSNs: MagTek IPADs: 95005300
 MagTek MSR Devices: 90120900
 IDTech All: 62994910

1
At the time of this writing, please use the specified EncryptedFormat regardless of the device manufacturer used.

Encrypted Data Best Practices

 Never store the EncryptedBlock or EncryptedKey post authorization.

 In systems that support “Store and Forward” functionality, EncryptedBlock or EncryptedKey information may
be stored prior to authorization only.

 Developers should code to accept manually entered card data only via the MagTek encryption device and not
through any native key entry options as this would result in sending non-encrypted data. Sending non-
encrypted data will not pass the merchant table validation and the request will fail.

 Dial backup note: at this time, Mercury’s Dial Backup Bridge does not support E2E transactions over dial.

E2E XML Example: Credit Sale Request
Note: extensive XML request and response examples are available from your developer support representative. Below are
XML details for an encrypted Credit: Sale and an encrypted PrePaid: NoNSFSale

<?xml version="1.0"?>
<TStream>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

43

 <Transaction>
 <MerchantID>395347305=E2E</MerchantID> //note this is the E2E enabled MID for testing
 <TranType>Credit</TranType>
 <PartialAuth>Allow</PartialAuth>
 <TranCode>Sale</TranCode>
 <InvoiceNo>1</InvoiceNo>
 <RefNo>1</RefNo>
 <Memo>Product v1.1</Memo>
 <Account>
 <EncryptedFormat>MagneSafe</EncryptedFormat>
 <AccountSource>Swiped</AccountSource>
 <EncryptedBlock>D7019F295F395B56233CA41F357CD5563D6FB07E78D418EB296473AFC02989
237D97F9B40D503272</EncryptedBlock>
 <EncryptedKey>9500530000000720000F</EncryptedKey>
 </Account>
 <Amount>
 <Purchase>2.25</Purchase>
 </Amount>
 </Transaction>
</TStream>

E2E XML Example: Credit Sale Response

Note: Truncating <AcctNo> and <ExpDate> in Response All credit card data will be returned truncated for encrypted
transaction responses. The first six and last four digits of the AcctNo will be returned with middle six digits replaced with
Xs, ExpDate will be masked by Xs. Mercury recommends storing no more than the last four digits of the card number.

<?xml version="1.0"?>
<RStream>
 <CmdResponse>

 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>AP</TextResponse>
 <UserTraceData></UserTraceData>

 </CmdResponse>
 <TranResponse>

 <MerchantID>395347305</MerchantID>
 <AcctNo>549999XXXXXX6781</AcctNo>
 <ExpDate>XXXX</ExpDate>//Always returned truncated in response
 <CardType>M/C</CardType>
 <TranCode>Sale</TranCode>
 <AuthCode>MC0225</AuthCode>
 <CaptureStatus>Captured</CaptureStatus>
 <RefNo>0001</RefNo>
 <InvoiceNo>1</InvoiceNo>
 <Amount>
 <Purchase>2.25</Purchase>
 <Authorize>2.25</Authorize>
 </Amount>
 <AcqRefData>bMCC6429311215</AcqRefData>
 <ProcessData>|00|410100201000</ProcessData>

 </TranResponse>
</RStream>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

44

E2E XML Example: PrePaid NoNSFSale Request

<?xml version="1.0"?>
<TStream>
 <Transaction>
 <IpPort>9100</IpPort>
 <MerchantID>395347305=E2E</MerchantID>
 <TranType>PrePaid</TranType>
 <TranCode>NoNSFSale</TranCode>
 <Memo>Product v1.1</Memo>
 <InvoiceNo>2</InvoiceNo>
 <RefNo>2</RefNo>
 <Account>

<EncryptedFormat>MagneSafe</EncryptedFormat>
<AccountSource>Swiped</AccountSource>
<EncryptedBlock>BF8BAF6BBE158E40ECD308AFD01359C29F0300D4AC06A3BF3300B2774C3812D9CF505

2C7532CBDFD</EncryptedBlock>
 <EncryptedKey>9500530000000720000F</EncryptedKey>
 </Account>
 <Amount>
 <Purchase>3.10</Purchase>
 </Amount>
 </Transaction>
</TStream>

XML Example: PrePaid NoNSFSale Response

<?xml version="1.0"?>
<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>AP</TextResponse>
 <UserTraceData></UserTraceData>
 </CmdResponse>
 <TranResponse>
 <MerchantID>395347305</MerchantID>
 <TranType>PrePaid</TranType>
 <TranCode>NoNSFSale</TranCode>
 <InvoiceNo>2</InvoiceNo>
 <AcctNo>605011123456000679</AcctNo>
 <RefNo>390427</RefNo>
 <AuthCode>390427</AuthCode>
 <CaptureStatus>Captured</CaptureStatus>
 <Amount>
 <Purchase>3.10</Purchase>
 <Authorize>3.10</Authorize>
 <Balance>80.25</Balance>
 </Amount>
 </TranResponse>
</RStream>

E2E Error Responses
There are four categories of E2E error responses: Connectivity, Merchant Check, Invalid Fields and Corrupted Data errors.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

45

1. Connectivity Errors
In the rare event that Mercury’s encryption service is unavailable, the following error will be returned:

XML Example: E2E Decryption Service Unavailable

 <CmdResponse>
 <ResponseOrigin>Server</ResponseOrigin>
 <DSIReturnCode>004116</DSIReturnCode>
 <CmdStatus>Error</CmdStatus>
 <TextResponse> Decryption Service Unavailable.</TextResponse>

2. Mercury’s E2E Merchant Check Mismatch Error

 If E2E encryption data elements (<EncryptedFormat>, <AccountSource>, <EncryptedBlock>,
<EncryptedKey>) are sent in the request but merchant is not setup for E2E, then the transaction will
return “Merchant setting does not accept Encrypted data.”

 If merchant is setup for E2E but the request does not contain the E2E Encryption elements, then the
transaction will return “Merchant setting requires Encrypted data.”

XML Example: E2E Mismatch

 <CmdResponse>
 <ResponseOrigin>Server</ResponseOrigin>
 <DSIReturnCode>004115</DSIReturnCode>
 <CmdStatus>Error</CmdStatus>
 <TextResponse>Merchant setting requires Encrypted data</TextResponse>

3. E2E Invalid Field Errors
In the event that one of the E2E Encryption elements is missing in the transaction request, an “Invalid
Field” will be returned qualified by the missing element.

XML Example: E2E Invalid Field Response

 <CmdResponse>
 <ResponseOrigin>Server</ResponseOrigin>
 <DSIReturnCode>100254</DSIReturnCode>
 <CmdStatus>Error</CmdStatus>
 <TextResponse>Invalid Field - Encrypted Block</TextResponse>

4. E2E Corrupted Data within an Encryption Data Element Error
In the event that one of the E2E encryption data elements contains corrupted, malformed or in any way
incorrect data, Mercury’s encryption service will return a text response containing Decryption Service
Unavailable followed by the field detected to contain the failed data. These failure messages are
dynamically generated:

XML Example: E2E Failure Response

 <CmdResponse>
 <ResponseOrigin>Server</ResponseOrigin>
 <DSIXReturnCode>004116</DSIXReturnCode>
 <CmdStatus>Error</CmdStatus>
 <TextResponse>Decryption Service Unavailable-Failure Message:Invalid EncryptedBlock
</TextResponse>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

46

Mercur yPay™ MToken Speci f i cat ions

Initial Token Request: RecordNo and Frequency
Tokens are unique reference records generated “upon request” at Mercury for all credit transactions. Tokens are returned
to the point of sale in the transaction response in place of account number and expiration date. Mercury will configure
merchant accounts to either accept tokens or not accept tokens. This merchant token setting requires both <RecordNo>
and <Frequency> be sent with each transaction. If merchant is setup for tokenization AND both <RecordNo> and
<Frequency> elements are in the request then Mercury builds the token record. The Token is sent back in the <RecordNo>
xml element. In the event of a decline/error response, no token is generated.

Requesting and subsequently using a token record follow a similar pattern: a standard XML request is sent with the addition
of the “Record Number requested” as a part of the transaction request. This, along with the frequency element and
corresponding enabled tokenization flags set on Mercury’s merchant tables generates the token record in the response.
Any subsequent transaction which uses the token will always generate another new token.

Token Data Storage: Developers are required build in provisions to securely handle, store and maintain Token Records.
After a token has been generated and returned in the response, the developer should use appropriate precautions when
storing this for subsequent use:

 Only store a token record if there is a business need and if this information supports your targeted
business/merchants.

 Never store a token record if there is not a business need.

 Build in retention and expiration timelines for any stored token record.

 Always dispose of expired token records.

 The maximum life-span until a OneTime token expires is approximately 6 months from the date the token record is
generated.

 The maximum life-span until a Recurring token expires is approximately 24 months from the date the token record
is generated.

 A new token record will always be returned with each subsequent transaction associated with a particular card
number. Therefore, if storing token data, always store only the most recent token record returned and dispose of
all previous token records.

 Dial backup Bridge note: at this time, Mercury’s Dial Backup Bridge supports credit token transactions over dial.

 Tokens use is relative to one specific Merchant location Business ID (BID) but may be used across other BIDs or
locations under certain conditions using Mercury Multiple-Merchant Tokenization.

Multiple-Merchant Tokenization (MMT), enables a single business entity with multiple locations to use Mercury's MToken
platform across all of their locations if they all share a common ownership attributes (legal name, Tax ID and owner) and
have the cross-location centrally housed data base infrastructure in place to support it. Upon request, Mercury's
Underwriting account specialists can authorize the creation of an MMT grouping that allows token sharing from one
location to another. In most cases this will be implemented at the merchant level without issue but there are safeguards in
place to prevent inadvertent users of MMT outside the prescribed group. Tokens are tied to merchant locations and can
only be used in MMT situations if grouped. For example, in the case that ungrouped Merchant A tries to redeem a token
issued from grouped Merchant B, and then Merchant A would receive a response of “Token Invalid.”

RecordNo and Frequency Specifications
Token records are generated by XML transaction requests using the <RecordNo> and <Frequency> elements.

<Transaction>
 <RecordNo>RecordNumberRequested</RecordNo>
 <Frequency>OneTime</Frequency>

</Transaction>

 Tokens are requested within a standard XML request along with cardholder data in <AcctNo>, <Track1>, or
<Track2>. Additionally, Mercury’s end-to-end encryption technology can be used and the card data can be sent in
the EncryptedBlock element.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

47

 The initial token transaction request will contain two additional data elements: a <RecordNo> element used to
request a token record and a <Frequency> element used to define the specific type of token to be generated.

The initial <RecordNo> element will always contain ‘RecordNumberRequested’.
The <Frequency> element has two options:

a. OneTime – token used in subsequent transactions.
b. Recurring – tokens used for recurring billing.

Element Req Min Max Type Description

Transaction: RecordNo Y 1 100 AN Used on the initial request to generate a token using
'RecordNumberRequested.' Used in subsequent transaction as
the actual token returned from Mercury

Transaction: Frequency Y 1 20 AN Type of Token requested: 'OneTime' or 'Recurring'

TransResponse: RecordNo Y 1 100 AN Token record returned from Mercury

XML Example: Credit Sale, requesting Token Record, one time

<?xml version="1.0"?>
<TStream>
 <Transaction>
 <MerchantID>395347306=TOKEN</MerchantID> //specific token enabled MID
 <OperatorID>Test</OperatorID>
 <TranType>Credit</TranType>
 <PartialAuth>Allow</PartialAuth>
 <TranCode>Sale</TranCode>
 <InvoiceNo>20</InvoiceNo>
 <RefNo>20</RefNo>
 <Memo>Product v1.1</Memo>
 <RecordNo>RecordNumberRequested</RecordNo>//tag used to request a token on response
 <Frequency>OneTime</Frequency>
 <Account>
 <Track2>4003000123456781=13055025432198712345</Track2>
 </Account>
 <Amount>
 <Purchase>2.25</Purchase>
 </Amount>
 </Transaction>
</TStream>

XML Example: Credit Sale, response with One-Time token record

<?xml version="1.0" ?>
<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>AP</TextResponse>
 </CmdResponse>
 <TranResponse>
 <MerchantID>395347306=TOKEN</MerchantID>
 <AcctNo>400300XXXXXX6781</AcctNo>//Note truncated Account number
 <ExpDate>XXXX</ExpDate>//ExpDate always returned as XXXX
 <CardType>VISA</CardType>
 <TranCode>Sale</TranCode>
 <AuthCode>000027</AuthCode>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

48

 <CaptureStatus>Captured</CaptureStatus>
 <RefNo>0003</RefNo>
 <InvoiceNo>0020</InvoiceNo>
 <OperatorID>Test</OperatorID>
 <Memo>Product v1.1</Memo>
 <Amount>
 <Purchase>2.25</Purchase>
 <Authorize>2.25</Authorize>
 </Amount>
 <AcqRefData>aEb000140567810225c0225d5e00</AcqRefData>
 <RecordNo>BuFzLtekgFrTsiCOxI59PCQUfZe32C3YYXgXuPuFU64yEAQQADIQAAIX
 </RecordNo>//typical token length is 48-53 but shouldbe coded to accept up to 100
 <ProcessData>|00|210100201000</ProcessData>
 </TranResponse>
</RStream>

XML Example: Credit Sale, requesting token record, Recurring

<?xml version="1.0" ?>
<TStream>
 <Transaction>
 <MerchantID>395347306=TOKEN</MerchantID>
 <OperatorID>TEST</OperatorID>
 <TranType>Credit</TranType>
 <PartialAuth>Allow</PartialAuth>
 <TranCode>Sale</TranCode>
 <InvoiceNo>0021</InvoiceNo>
 <RefNo>0021</RefNo>
 <Memo>Product v1.1</Memo>
 <RecordNo>RecordNumberRequested</RecordNo>
 <Frequency>Recurring</Frequency>//note frequence is the only change; Recurring token valid 24
months
 <Account>
 <Track2>4003000123456781=13055025432198712345</Track2>
 </Account>
 <Amount>
 <Purchase>3.25</Purchase>
 </Amount>
 </Transaction>
</TStream>

XML Example: Credit Sale, response with Recurring token record

<?xml version="1.0"?>
<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>AP</TextResponse>
 <UserTraceData></UserTraceData>
 </CmdResponse>
 <TranResponse>
 <MerchantID>395347306=TOKEN</MerchantID>
 <AcctNo>400300XXXXXX6781</AcctNo>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

49

 <ExpDate>XXXX</ExpDate>
 <CardType>VISA</CardType>
 <TranCode>Sale</TranCode>
 <AuthCode>000027</AuthCode>
 <CaptureStatus>Captured</CaptureStatus>
 <RefNo>0004</RefNo>
 <InvoiceNo>0021</InvoiceNo>
 <OperatorID>TEST</OperatorID>
 <Memo>Product v1.1</Memo>
 <Amount>
 <Purchase>3.25</Purchase>
 <Authorize>3.25</Authorize>
 </Amount>
 <AcqRefData>aEb000140567810225c0225d5e00</AcqRefData>
 <RecordNo>lm1taJnzdyWvOEJgDSFxgOAmukvmORuntn/wRb+YK/szEAQQADIQAAAR //note tokens are
return
 </RecordNo>
 <ProcessData>|00|210100221000</ProcessData>
 </TranResponse>
</RStream>

 Using E2E Encryption with initial token request

End-to-End encryption technology adds one more layer of security to the tokenization process. E2E and Tokenization must
both be supported on the local POS system and configured on the Mercury merchant table.

XML Example: Credit Sale, requesting token record, one time using E2E data

<?xml version="1.0"?>
<TStream>
 <Transaction>
 <MerchantID>395347308=E2ETKN</MerchantID>
 <OperatorID>Test</OperatorID>
 <TranType>Credit</TranType>
 <TranCode>Sale</TranCode>
 <PartialAuth>Allow</PartialAuth>
 <InvoiceNo>20</InvoiceNo>
 <RefNo>20</RefNo>
 <RecordNo>RecordNumberRequested</RecordNo>
 <Frequency>OneTime</Frequency>
 <Account>
 <EncryptedFormat>MagneSafe</EncryptedFormat>
 <AccountSource>Swiped</AccountSource>
<EncryptedBlock>CBF9CFE5A8B8E5B181ADD888141E87732AAE3387A819C2F79921E4BF00AD21EF24480
F7840DB03FD</EncryptedBlock>
 <EncryptedKey>9500530000000720003D</EncryptedKey>
 </Account>
 <Amount>
 <Purchase>2.25</Purchase>
 </Transaction>
</TStream>

XML Example: Credit Sale, requesting token record, one time using E2E data (Response)

<?xml version="1.0"?>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

50

<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>AP</TextResponse>
 <UserTraceData></UserTraceData>
 </CmdResponse>
 <TranResponse>
 <MerchantID>395347308=E2ETKN</MerchantID>
 <AcctNo>400300XXXXXX6781</AcctNo>
 <ExpDate>XXXX</ExpDate>
 <CardType>VISA</CardType>
 <TranCode>Sale</TranCode>
 <AuthCode>000027</AuthCode>
 <CaptureStatus>Captured</CaptureStatus>
 <RefNo>0004</RefNo>
 <InvoiceNo>20</InvoiceNo>
 <Amount>
 <Purchase>2.25</Purchase>
 <Authorize>2.25</Authorize>
 </Amount>
 <AcqRefData>aEb000140567810225c0225d5e00</AcqRefData>
<RecordNo>58MuH48lgTDvJirMWmmXKbGlsv7cmO2CcahlPML0FTsyEAQQADIQAAIe</RecordNo>
 <ProcessData>|00|210100200000</ProcessData>
 </TranResponse>
</RStream>

Subsequent Usage of Token: ByRecordNo
A token record will be passed back to the POS on all approved credit TranCodes (Debit, EBT and Gift/PrePaids will not
trigger a Token record response). The returned token will be referred to as the “Record Number” (<RecordNo>) and all
subsequent requests will be submitted “ByRecordNo.”

Supported Credit Transactions Token records for credit transaction TranCodes must be initially requested by the standard
TranCode element but any subsequent transaction request must use requested “ByRecordNo.”

NOTE: <Frequency> values must stay consistent in all subsequent uses MToken requests. For example, a OneTime Sale
request must be followed with a OneTime VoidSaleByRecordNo Request or a Recurring PreAuth request can only be
followed by a Recurring PreAuthCaptureByRecordNo request. Inconsistent usage of <Frequency> will cause the
subsequent transaction request to fail with the following error: Error # 004119 - Token Service Unavailable. - 200 Response
With Status: Failure Message: Parse token failure.

Credit TranCodes Used to Request a Token TranCodes for Subsequent Use of Token

Sale SaleByRecordNo

Return ReturnByRecordNo

VoidSale VoidSaleByRecordNo

VoidReturn VoidReturnByRecordNo

PreAuth PreAuthByRecordNo

PreAuthCapture PreAuthCaptureByRecordNo

Adjust AdjustByRecordNo

FSASale FSASaleByRecordNo

ReverseFSASale ReverseFSASaleByRecordNo

CardLookUp NA

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

51

XML Examples: ReturnByRecordNo Request using Token Record in place of cardholder data

<?xml version="1.0"?>
<TStream>
<Transaction>
 <MerchantID>395347306=TOKEN</MerchantID>
 <OperatorID>Test</OperatorID>
 <TranType>Credit</TranType>
 <TranCode>ReturnByRecordNo</TranCode>//Note use of Token TranCode
 <PartialAuth>Allow</PartialAuth>
 <InvoiceNo>0025</InvoiceNo>
 <RefNo>0025</RefNo>
<RecordNo>BuFzLtekgFrTsiCOxI59PCQUfZe32C3YYXgXuPuFU64yEAQQADIQAAIX</RecordNo>//
note in place of Account level setting is the actual RecordNo and Frequency
 <Frequency>OneTime</Frequency>//must match original requested Frequency
 <Amount>
 <Purchase>3.75</Purchase>
 </Amount>
 </Transaction>
</TStream>

ByRecordNo transaction responses truncate <AcctNo> and <ExpDate>
As seen in the example below, all card data will be returned truncated for tokenized transactions. The first six and last four
digits of the <AcctNo> will be returned with middle section replaced with Xs; <ExpDate> will be masked as well.

For increased level of card data security, Mercury highly recommends storing only the last four digits of the <AcctNo>
element field for POS-side reports.

XML Examples: ReturnByRecordNo Response generating a new token

<?xml version="1.0"?>
<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>AP</TextResponse>
 <UserTraceData></UserTraceData>
 </CmdResponse>
 <TranResponse>
 <MerchantID>395347306=TOKEN</MerchantID>
 <AcctNo>549999XXXXXX6781</AcctNo>
 <ExpDate>XXXX</ExpDate> //Expiration is always returned truncated. If required for local records,
always pull from the request.
 <CardType>M/C</CardType>
 <TranCode>Return</TranCode>
 <AuthCode></AuthCode>
 <CaptureStatus>Captured</CaptureStatus>
 <RefNo>0032</RefNo>
 <InvoiceNo>0025</InvoiceNo>
 <OperatorID>Test</OperatorID>
 <Amount>
 <Purchase>3.75</Purchase>
 <Authorize>3.75</Authorize>
 </Amount>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

52

 <AcqRefData>bMCC6429311215</AcqRefData>
 RecordNo>BKjylZ/QSYkM30QcIgXGlXHr+fRxLFt73MJZPAeQhjoyEAQQADIQAAIY</RecordNo> //a new
token is always returned in the response
 <ProcessData>|20|210100700000</ProcessData>
</TranResponse>
</RStream>

XML Example: PreAuth requesting Token Record, one time

<?xml version="1.0"?>
<TStream>
 <Transaction>
 <MerchantID>395347306=TOKEN</MerchantID>
 <OperatorID>Test</OperatorID>
 <TranType>Credit</TranType>
 <TranCode>PreAuth</TranCode>
 <PartialAuth>Allow</PartialAuth>
 <InvoiceNo>0027</InvoiceNo>
 <RefNo>0027</RefNo>
 <RecordNo>RecordNumberRequested</RecordNo>
 <Frequency>OneTime</Frequency>
 <Account>
 <Track2>4003000123456781=13055025432198712345</Track2>
 </Account>
 <Amount>
 <Purchase>5.25</Purchase>
 <Authorize>5.25</Authorize>
 </Amount>
 </Transaction>
</TStream>

XML Example: PreAuth Response with Token Record returned, one time

<?xml version="1.0"?>
<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>AP</TextResponse>
 </CmdResponse>
 <TranResponse>
 <MerchantID>395347306=TOKEN</MerchantID>
 <AcctNo>400300XXXXXX6781</AcctNo>
 <ExpDate>XXXX</ExpDate>
 <CardType>VISA</CardType>
 <TranCode>PreAuth</TranCode>
 <AuthCode>000038</AuthCode>
 <InvoiceNo>0027</InvoiceNo>
 <Amount>
 <Purchase>5.25</Purchase>
 <Authorize>5.25</Authorize>
 </Amount>
 <AcqRefData>Kb9012345670619</AcqRefData>
<RecordNo>3Bt/yWkeon6zWfJpVDi4uLSs/A1x68uBKib/m82zkW0yEAQQADIQAACj</RecordNo>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

53

 <ProcessData>|14|210100200000</ProcessData>
 </TranResponse>
</RStream>

XML Example: PreAuthCaptureByRecordNo (Request) using returned token record, one time

<?xml version="1.0"?>
 <TStream>
 <Transaction>
 <ProcessorReturnCode>Y</ProcessorReturnCode>
 <MerchantID>395347306=TOKEN</MerchantID>
 <OperatorID>Test</OperatorID>
 <TranType>Credit</TranType>
 <TranCode>PreAuthCaptureByRecordNo</TranCode>

<PartialAuth>Allow</PartialAuth>
 <InvoiceNo>0027</InvoiceNo>
 <RefNo>0027</RefNo>
<RecordNo>3Bt/yWkeon6zWfJpVDi4uLSs/A1x68uBKib/m82zkW0yEAQQADIQAACj </RecordNo>
 <Frequency>OneTime</Frequency>
 <Amount>
 <Purchase>5.25</Purchase>
 <Authorize>5.25</Authorize>
 <Gratuity>1.00</Gratuity>
 </Amount>
 <TranInfo>
 <AuthCode>000038</AuthCode>
 <AcqRefData>Kb9012345670619</AcqRefData>
 </TranInfo>
 </Transaction>
 </TStream>

XML Example: PreAuthCaptureByRecordNo (Response) generating a new token response

<RStream>
 <CmdResponse>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>AP</TextResponse>
 </CmdResponse>
 <TranResponse>
 <MerchantID>395347306=TOKEN</MerchantID>
 <AcctNo>400300XXXXXX6781</AcctNo>
 <ExpDate>XXXX</ExpDate>
 <CardType>VISA</CardType>
 <TranCode>PreAuthCapture</TranCode>
 <AuthCode>000038</AuthCode>
 <CaptureStatus>Captured</CaptureStatus>
 <RefNo>0012</RefNo>
 <InvoiceNo>00027</InvoiceNo>
 <Amount>
 <Purchase>5.25</Purchase>
 <Authorize>2.11</Authorize>
 <Gratuity>1.00</Gratuity>
 </Amount>
 <AcqRefData>Kb9012345670619</AcqRefData>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

54

 <RecordNo>I1u0bAbY+5uBhZHnEa2AJ9yC4xGAkBCwG7E91cWmXikyEAQQADIQAADA </RecordNo>
 <ProcessData>|15|210100700000</ProcessData>
 </TranResponse>
</RStream>

Using Tokenization for Recurring Billing
The initial and subsequent use of tokens requested for recurring billing purposes follows the same set of XML requests
except that the initial frequency is requested as ‘Recurring.’ Recurring token records expire after 2 years. It is important to
have provision in place to store token records appropriately and to always store only the most recently returned token
data. Note: Token frequency values must match on all subsequent usage. A recurring token can only be used for a
subsequent recurring request just as a onetime token can only be used for a onetime request.

XML Example: requesting token record, Recurring

 <RecordNo>RecordNumberRequested</RecordNo>
 <Frequency>Recurring</Frequency>

Downgrade Note: Initial token requests will always require an actual transaction be submitted in order to capture the
generated token. Sending an uncaptured PreAuth as a way of receiving a token constitutes a “misuse of the
authorization network” and causes additional fees generated by the card associations. Integrators are recommended
to use the CardLookup transaction for this purpose.

MToken Errors Responses
There are four categories of MToken error responses: Connectivity, Merchant Check, Invalid Fields and Corrupted Data
errors.

1. Connectivity Errors
A connection failure to the tokenization server will return an “Unavailable” response.

XML Example: Connectivity Errors, Service Unavailable

 <CmdResponse>
 <ResponseOrigin>Server</ResponseOrigin>
 <DSIReturnCode>004118</DSIReturnCode>
 <CmdStatus>Error</CmdStatus>
 <TextResponse> Decryption Service Unavailable. - Status Code Not 200 - 503</TextResponse>

XML Example: Connectivity Errors, Token Service Unavailable
 <CmdResponse>
 <ResponseOrigin>Server</ResponseOrigin>
 <DSIReturnCode>004119</DSIReturnCode>
 <CmdStatus>Error</CmdStatus>
 <TextResponse> Token Service Unavailable. - 200 Response With Status:Error Message:Error generating
token</TextResponse>

2. Merchant Table Token Setup Error

Mercury merchants must both send the required tokenization data elements AND be set up in the Mercury
merchant tokenization tables for a tokenization request to be validated. Only credit TranCodes listed above are
checked. Debit, EBT, Gift/PrePaid and ADMIN transactions are ignored.

 If <RecordNo> and <Frequency> elements are in the request but merchant is not setup for tokenization
then the transaction will decline.

XML Example: Merchant Token Setup Error

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

55

 <CmdResponse>
 <ResponseOrigin>Server</ResponseOrigin>
 <DSIReturnCode>004117</DSIReturnCode>
 <CmdStatus>Error</CmdStatus>
 <TextResponse>Merchant Setting Does Not Accept RecordNo and Frequency.</TextResponse>
 <UserTraceData></UserTraceData>
 </CmdResponse>

 If merchant is setup for tokenization in the merchant tables but the request does not contain <RecordNo>

and <Frequency> elements then the transaction will decline.

XML Example: Merchant Token Setup Error

 <CmdResponse>
 <ResponseOrigin>Server</ResponseOrigin>
 <DSIReturnCode>004116</DSIReturnCode>
 <CmdStatus>Error</CmdStatus>
 <TextResponse>Merchant Setting Requires RecordNo and Frequency.</TextResponse>

If merchant is setup for tokenization AND both <RecordNo> and <Frequency> elements are in request then
Mercury builds the token record. Token is sent back in the <RecordNo> xml element. In the event of a
decline/error response, no token is generated.

3. Invalid field or missing field errors
XML Example: <RecordNo> missing in data element field. Note this level of error returns a merchant
setting message as the absence of a RecordNo is validated by the Merchant Table settings.

 <CmdResponse>
 <ResponseOrigin>Server</ResponseOrigin>
 <DSIReturnCode>004116</DSIReturnCode>
 <CmdStatus>Error</CmdStatus>
 <TextResponse>Merchant Setting Requires RecordNo.</TextResponse>

XML Example: <Frequency> missing Invalid Field

 <CmdResponse>
 <ResponseOrigin>Server</ResponseOrigin>
 <DSIReturnCode>100256</DSIReturnCode>
 <CmdStatus>Error</CmdStatus>
 <TextResponse>Invalid Field-Frequency</TextResponse>

4. Corrupt RecordNo

XML Example: Corrupted data in <RecordNo> element or if token has expired:

 <CmdResponse>
 <ResponseOrigin>Server</ResponseOrigin>
 <DSIReturnCode>004119</DSIReturnCode>
 <CmdStatus>Error</CmdStatus>
 <TextResponse>Token Service Unavailable. - 200 Response With Status:Failure Message:Parse token
failure</TextResponse>

Corrupt Frequency error:

XML Example: Invalid Field

 <CmdResponse>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

56

 <ResponseOrigin>Server</ResponseOrigin>
 <DSIReturnCode>100256</DSIReturnCode>
 <CmdStatus>Error</CmdStatus>
 <TextResponse>Invalid Field-Frequency</TextResponse>
 <UserTraceData></UserTraceData>
 </CmdResponse>
</RStream>

MercuryGift™ Card Integration

MercuryGift is a full-featured gift card program maintained on its own designated platform. Also known as PrePaid, Mercury’s
gift card program is a unique advantage that developers and their resellers can leverage to sell more POS systems and retain
merchant base. Gift/PrePaid is a unique TransactionType and yet PrePaid TranCodes are formatted identically to credit
transactions.

Production and Development-Test Gift/Prepaid Servers

ActiveX/DSI Gift/PrePaid DNS Web Services URL Port

Production Primary: g1.mercurypay.com
Production Secondary: g2.backuppay.com

https://w1.mercurypay.com/ws/ws.asmx
https://w2.backuppay.com/ws/ws.asmx

IP Port: 9100 must be specified

Production ServerIPConfig sting:
g1.mercurypay.com;g2.backuppay.com

 IP Port: 9100 must be specified

Development: Primary: g1.mercurydev.net
Secondary: g2.mercurydev.net

https://w1.mercurydev.net/ws/ws.asmx IP Port: 9100 must be specified

Development ServerIPConfig sting:
g1.mercurydev.net;g2.mercurydev.net

 IP Port: 9100 must be specified

Integration Best Practices: The gift server names and port are different from those used for credit/debit/EBT/check, and
must be explicitly specified to process successfully. Note all DSI transaction default to routing transactions via port 9000
unless otherwise specified. For Gift/PrePaid, port 9100 must us specified.

MerchantID
The same MerchantID may be used for both credit and gift transactions. The Mercury MerchantIDs convention is: 11 digit
numeric MID + “=” + 6 digit alpha "nickname." For example, a full MerchantID might be 884XXXXXXXX=NCKNAM. (a maximum
of 24 alpha-numeric characters should be allowed). If using a Token or E2E enabled Merchant ID, corresponding tags must be
used when sending PrePaid requests.

Supported Transactions
At a minimum, it is necessary to support Issue, NoNSFSale or Sale, Return, and Balance. Mercury also recommends supporting
gift card void functionality (VoidIssue, VoidSale, VoidReload, VoidReturn).

Mercury’s gift cards are shipped without a specified value which allows the merchant to issue the cards per the request of the
customer or to use as a credit for returned merchandise. The first transaction on all gift cards will be PrePaid: Issue. The issue
activates the card, sets the initial card balance and sets card usage parameters on the Mercury gift server. Once a card is
activated and put into general use, it remains "issued" for the life of the card. When brought to a 0.00 balance or anytime
during the life of the account, the card may be reloaded up to 2 times/day based on the card's usage parameters.

An Issue may be voided only where there is no transaction history on the card. A VoidIssue clears the card of value and
deactivates it.

1. PrePaid: Issue Activates an account and loads a specified balance onto the card. Issue is always the very first

transaction performed on a new card.
 The card may not be issued already.

https://w1.mercurypay.com/ws/ws.asmx
https://w2.backuppay.com/ws/ws.asmx
https://w1.mercurydev.net/ws/ws.asmx

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

57

 The issue amount must not exceed the merchant’s maximum issue amount (see Setup Attributes section
below for how the maximum issue amount is determined).

 If no transaction history is logged, the Issue may be cancelled by running a VoidIssue

2. Prepaid: Sale (Redemption) Takes value off of the card, reducing the outstanding balance.
 The card must already be issued.
 Card must have sufficient balance to cover the purchase request.
 Declines the card in case of insufficient balance. See NoNSFSale

3. PrePaid: NoNSFSale Approves for existing balance remaining on card; allows for POS to manage a “Balance Due”

split tender if there is not a sufficient balance on the card to cover the entire purchase amount.
 For example, a Gift card has a balance of $60.00. The cardholder uses the card to perform a $100 purchase;

the NoNSFSale will authorize for the available balance, reducing the gift card balance to $0.00. The POS must
include logic which prompts for the remaining amount due.

 If the gift card balance is sufficient to cover the full amount of the sale, NoNSFSale functions as a normal sale
transaction.

 In either case, a NoNSFSale can be cancelled using a PrePaid VoidSale transaction or by Reloading the card.

Integration Best Practices: Mercury recommends supporting the NoNSFSale in place of Sale transaction. NoNSFSale
provides greater convenience to merchants and customers in the event of an insufficient gift card balance.

4. PrePaid: Reload (Increment, Add Value) Adds more value to a card, increasing the outstanding balance.

 The card must already be issued.

5. PrePaid: Return Adds more value to a card, increasing the outstanding balance or is used when merchandise is

returned and the value is then added to a gift card in place of cash.
 The card must already be issued.
 Return has the exact same effect on the gift card as Reload. However, returning a product originally purchased

with a gift card Sale or NoNSFSale, will have different tax and inventory effects compared to a simple Reload
(Add Value) transaction, if the POS handles this level of accounting detail.

6. PrePaid: VoidSale, VoidReload, VoidReturn Cancels/voids a previously approved Sale/Reload/Return.

 Voids must specify the reference number (RefNo) and authorization code (AuthCode) returned in the
TranResponse of the original transaction, as well as the card number and original transaction amount.

7. PrePaid: VoidIssue Retracts the issuance of a card.

 Can only be done if there have been no other transactions on the card since the original Issue transaction.

8. PrePaid: Balance A balance inquiry, which responds with the outstanding balance of a card.

 A Purchase amount is not required in the request.
 Note: Mercury’s gift server returns the outstanding balance in the response stream for all gift card

transactions, so the POS can print the outstanding balance on all receipts.
 There is a maximum balance allowed on the card, determined by the merchant and the card usage

parameters.

PrePaid Track2 and Manual Formats
Mercury gift cards and many third party gift cards typically encode a non ISO financial format. Mercury cards are encoded with
Track2 data only, yet the various standards in the field are broad. The following is a typical Track2 read.

;6050110000005888457=250110126?

While there is an expiration specified in the XML format, and something must be sent, it is not used.

Mercury Standard Issue Card ranges

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

58

Mercury’s PrePaid BIN uses a standard of 19 digits, starting with 6050110XXXXXXXXXXX. BIN prefixes can serve as validation
that the swiped card is a MercuryGift card. Note: Mercury’s “legacy” BIN began with a prefix of “77XXXXXXXXX” and was 11
digits in length.

Pre-Existing Cards Not Produced By Mercury
When a merchant has participated in another provider’s gift card program prior to processing with Mercury, consider the
following:

1. If the magnetic stripe contains more than just Track2, the developer must make provisions to parse out only the

Track2 string for submission to Mercury. Failure to do so will result in the inability to swipe gift card transactions.

2. Mercury’s gift servers may be able to support the previously issued cards, without having to physically re-encode the

magnetic stripes and/or reprint the card numbers. This usually means that any Track2 data after the “=” sign will be
ignored, so that only the card number itself is utilized. The normal procedure is for the merchant or reseller to supply
5 gift cards in sequence, to Mercury’s gift card team for inspection.

3. In the event that the pre-existing cards are not compatible with Mercury’s platform, Mercury may be able to re-

encode the Track2 portion of the merchant’s cards. This requires shipping cards to Mercury.

4. In the event that the pre-existing cards are compatible with Mercury’s platform, the merchant may supply a

spreadsheet to Mercury detailing card numbers and current balances. Mercury can then import the outstanding
accounts and balances.

Duplicate Checking
Mercury’s gift card server performs duplicate checking and declines duplicates. A duplicate is defined as the same card
number, the same amount, and the same invoice number processed on the same day.

Card Encoding and Security Features – CRC and CVV Data
For fraud protection on Mercury generated gift cards, there is a “printed” set of numbers and “encoded” set of numbers.
Printed on the front is the card number followed by a dash and then a series of three to five numbers. The actual account card
number used for processing PrePaid transactions is the number to the left of the dash. The numbers to the right of the dash
are the Merchants Business ID. Both numbers are used when checking for balance inquiries online (www.mercury-gift.com).

On the back side of the card, just below the encoding magnetic stripe will be printed the account number followed by a dash
plus the Business ID; on the right will be displayed the card’s security code in a two or three digit number.

The encoding on the magnetic strip uses a Track2 string and follows this pattern: ;6050110000000296518=250110314? Note
the sentinels (; and ?) that are used to delineate the track. Sentinels must be parsed before processing. The data after the “= “

http://www.mercury-gift.com/

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

59

includes a "pseudo" Track formatted date of 2501 and additional data that is used to generate a Cycle Redundancy Check
(CRC), the last two digits of which are used for the security data number also printed on the card.

PrePaid CRC Data
PrePaid gift cards created by Mercury include a standard two digit security code printed on the back side. (See below for
details on a second method using a three digit CVVData value.) Although this security data is referred to as “CVV” as in the
example above, it is a check digit value generated at the time of card encoding called a cycle redundancy check (CRC).
Developers can use this CRC code to increase transaction security on manually entered gift card transactions.

In order to effectively use the CRC for this purpose, send the transaction request with a pseudo <Track2> tag using the account
number, followed by the “=” followed by the two digit CRC listed on the back of the card. The following example is using
Account number=6050110000000296518, CRC=14 and the pseudo XML tag <Track2>6050110000000296518=14</Track2>.

XML Example: Manual PrePaid Request using Track2=CRC and Response

<?xml version="1.0"?>
<TStream>
 <Transaction>
 <IpPort>9100</IpPort>
 <MerchantID>595901</MerchantID> //PrePaid will process over token or E2E enabled MIDs but
will not return a Token; clear text card data is returned for PrePaid transactions
 <TranType>PrePaid</TranType>
 <TranCode>NoNSFSale</TranCode>
 <InvoiceNo>12</InvoiceNo>
 <RefNo>12</RefNo>
 <Memo>JBsPOS 7.5.0.2</Memo>
 <Account>
 <Track2>6050110000000296518=14</Track2>
 </Account>
 <Amount>
 <Purchase>2.10</Purchase>
 </Amount>
 </Transaction>
</TStream>

<?xml version="1.0"?>
<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>Approved</TextResponse>
 <UserTraceData></UserTraceData>
 </CmdResponse>
 <TranResponse>
 <MerchantID>595901</MerchantID>
 <TranType>PrePaid</TranType>
 <TranCode>NoNSFSale</TranCode>
 <InvoiceNo>12</InvoiceNo>
 <AcctNo>6050110000000296518</AcctNo>
 <RefNo>379733</RefNo>
 <AuthCode>379733</AuthCode>
 <Amount>
 <Authorize>2.10</Authorize>
 <Purchase>2.10</Purchase>
 <Balance>195.65</Balance>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

60

 </Amount>
 </TranResponse>
</RStream>

Invalid or Missing CRC Error Handling

1. If the CRC used is invalid or missing the transaction will decline and with the text response: “Mag Stripe Error -
Hand Key.”

 <CmdStatus>Declined</CmdStatus>
 <TextResponse>Mag Stripe Error - Hand Key</TextResponse>
2. If, in place of <Track2>, the <AcctNo> tag is inadvertently used, the transaction will fail with “Invalid Account

Number.”
 <CmdStatus>Error</CmdStatus>
 <TextResponse>Invalid Account Number</TextResponse>

PrePaid CVV Security Code Data Details
In 2009, Mercury added the capability of verifying a uniquely generated gift CVVData check. Though offering a higher level
of fraud protection on PrePaid manual entry, this method requires additional development work and must be requested at
the time any new gift card account application is filed. Once Gift Issue ranges are boarded in the merchant record they
cannot be altered and this CVVData method cannot be applied to previous Issue ranges boarded without the unique CVV.

 New XML tag in the transaction request is <CVVData></CVVData> and the new tag in the response is
<CVVResult></CVVResult>.

 Transaction types Mercury supports for 3 digit CVV – all manual (keyed) transactions (Sale, NoNSFSale, Return,
Reload, all voids) except for Issue and VoidIssue. This means if the merchant is setup to always process CVV, then
manual transactions will decline if the CVV is not provided except for on those two transactions.

 Our 3 digit CVV is always 3 digits. If we do change it will be larger than 3 digits but most likely it would never be
larger than 4 digits.

 How we behave when developer sends ‘None’ or ‘Illegible’ as the CVVData – this will be based on how the
merchant is setup below.

1. None – Mercury returns no CVVResult tag, if merchant is set to validate CVV always then Mercury will
decline with CVVResult = P.

2. Illegible – Same as none

 How Mercury boards a merchant: There are three different values for supporting CVV. All merchants are defaulted
to process CVV if provided, (Value=1) but the sales team or technical support can override the value if necessary.

1. Value=1Process CVV if supplied – if CVVData tag is not provided or not filled Mercury still processes the
transaction. If the CVVData tag is present and has data we attempt to perform a CVV match.

2. Value=0 Never check CVV – Mercury ignores the value in CVVData and never attempts a match. If they
pass us something we do not validate it, if they do not pass us anything we still process the transaction, if
they do not pass us the tag we still process the transaction.

3. Value=2 Always check CVV – The CVVData tag needs to be present and filled with a value the transaction
will fail if the tag does not exist or if the contents are not filled in. Then we also perform the CVV match.

 If Mercury returns a P in CVVResult
1. TextResponse = ‘Invalid CVV’
2. Cmdstatus = ‘Declined’

Gift/Prepaid CVV Responses for Manual Gift Transactions

Gift CVV Logic MPS SET CVV Checking CmdStatus CVVResult TextResponse

Not Passed 0 Never Check Disabled Trans Dependent n/a Trans Dependent

Not Passed 1 Check if supplied Disabled Trans Dependent n/a Trans Dependent

Not Passed 2 Always check Disabled Trans Dependent n/a Trans Dependent

Passed Valid 0 Never Check Disabled Trans Dependent n/a Trans Dependent

Passed Valid 1 Check if supplied Disabled Trans Dependent P Trans Dependent

Passed Valid 2 Always check Disabled Trans Dependent P Trans Dependent

Passed Invalid 0 Never Check Disabled Trans Dependent n/a Trans Dependent

Passed Invalid 1 Check if supplied Disabled Trans Dependent P Trans Dependent

Passed Invalid 2 Always check Disabled Trans Dependent P Trans Dependent

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

61

Gift CVV Logic MPS SET CVV Enabled CmdStatus CVVResult TextResponse

Not Passed 0 Never Check Enabled Trans Dependent n/a Trans Dependent

Not Passed 1 Check if supplied Enabled Trans Dependent n/a Trans Dependent

Not Passed 2 Always check Enabled Declined P Invalid CVV

Passed Valid 0 Never Check Enabled Trans Dependent n/a Trans Dependent

Passed Valid 1 Check if supplied Enabled Approved M Approved

Passed Valid 2 Always check Enabled Approved M Approved

Passed Invalid 0 Never Check Enabled Trans Dependent n/a Trans Dependent

Passed Invalid 1 Check if supplied Enabled Declined P Invalid CVV

Passed Invalid 2 Always check Enabled Declined P Invalid CVV

Setup Attributes and Text Responses
Each gift card Issue range has specific attributes or usage parameters to control the behavior of the cards. These attributes are
determined by the merchant during the Gift card application process. See the table below for a complete list of setup
attributes and their default values. These attributes typically do not have a direct relationship to development; however, these
behaviors will indirectly affect developers with regard to the text responses associated with declined transactions.

Integration Best Practices: Developers should ensure that the POS screen and/or receipts display any TextResponse messages
on declined gift transactions; this will usually provide enough information for the merchant to know how to proceed. For
instance, if the decline response says “Max Returns Exceeded” this indicates that return transactions will be allowed only on
the following day. “Exceeds Max Amount” indicates that a transaction exceeds the maximum balance value set up on the
attributes.

Set up Attribute Description - Default Value

Card Expiration
There are five parameters pertaining to the expiration of gift cards. If "enforce expiration" is NOT
checked, none of the other expiration attributes are active.

1. Enforce Expiration
Controls whether transactions will be permitted after a card has
expired.

NO expiration date

2. Monthly Debit on
Expiration

Allows assessment of monthly inactivity fees after card has expired. $0.00

3. Months Expire
Each card will expire after a specified number of months, relative to the
issue date.

<Null>

4. Absolute Expiration
Date

All cards in the range will expire on specified date, regardless of
issue/activation date.

<Null>

5. Expire Type Two choices: Absolute or Relative (see 2 lines immediately above) Relative

Maximum Issue *
Limits the maximum balance allowed on the card. An issue or return
that results in exceeding the Maximum will decline.

$250.00

Allow Return * Controls whether return transactions will be accepted. Do NOT allow Returns

Max # of Returns per
Day *

If Returns ARE allowed, limits how many return transactions per day. 2 per day

Deactivate Card at Zero *
If true, once the card’s balance reaches zero, it will be deactivated and
no further transactions will be accepted for that card.

Do NOT deactivate

Use CRC
On swiped transactions, compare the full track read to the track on file.
Provides a higher level of security against fraudulent cards.

Yes

Date Effective
Date after which previously issued cards can be redeemed (for holiday
promotions, etc)

<Null>

*denotes attributes that do NOT apply to Loyalty accounts, only to Gift cards.

Note: Mercury does not currently support expiration after a specified number of months of inactivity.
Mercury recommends merchants consult with their state business organizations, to determine whether expiration dates
and/or inactivity fees are allowed by local law.

Chain-Merchant Gift Card Acceptance

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

62

If several merchants are part of a gift card acceptance group, they will be able to perform Sale and Return transactions on
cards that are issued by the other members of their group. Reports are provided to summarize these cross-merchant
transactions, showing how much each store may owe to, and be owed by, the other stores in the group.

Web Services Method for Gift transactions
If using Web Services, use the GiftTransaction method to process gift transactions. The Web Services URLs for processing Gift
are the same as used for credit transactions.

The GiftTransaction method takes two arguments: GiftTransaction(trans as string, password as string)

1. Trans is an XML string with the details of the specific gift card transaction.
2. Password is a string that Mercury assigns for a particular Merchant ID.

Web Services XML Example: Non Encrypted Swiped PrePaid Balance: Request and Response

Note: for E2E or MToken enabled MerchantIDs, use the additional required tags that correspond to the credit Merchant table.
Although PrePaid transactions may be sent encrypted, a token is not returned.

Web Services XML Example: Non Encrypted PrePaid Balance: Request

User-Agent: MPS Transact 1.2.0.5
Content-Type: text/xml; charset=utf-8
SOAPAction: http://www.mercurypay.com/GiftTransaction

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>
 <GiftTransaction xmlns="http://www.mercurypay.com">
 <tran><?xml version="1.0"?>
 <TStream>
 <Transaction>
 <IpPort>9100</IpPort>
 <MerchantID>595901</MerchantID>
 <OperatorID>test</OperatorID>
 <TranType>PrePaid</TranType>
 <TranCode>Balance</TranCode>
 <InvoiceNo>9</InvoiceNo>
 <RefNo>9</RefNo>
 <Memo>MPS Transact 1.2.0.5</Memo>
 <Account>
 <Track2>6050110000012485491=250110117</Track2>
 </Account>
 </Transaction>
 </TStream></tran>
 <pw>xyz</pw>
 </GiftTransaction>
</soap:Body>

</soap:Envelope>

Web Services XML Example: Non Encrypted PrePaid Balance: Response

<?xml version="1.0" encoding="utf-8"?><soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><soap:Body><GiftTransactionResponse

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

63

xmlns="http://www.mercurypay.com"><GiftTransactionResult><?xml version="1.0"?>

<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>Approved</TextResponse>
 <UserTraceData></UserTraceData>
 </CmdResponse>
 <TranResponse>
 <MerchantID>595901</MerchantID>
 <TranType>PrePaid</TranType>
 <TranCode>Balance</TranCode>
 <InvoiceNo>9</InvoiceNo>
 <OperatorID>test</OperatorID>
 <AcctNo> 6050110000012485491</AcctNo>
 <Amount>
 <Balance>81.50</Balance>
 </Amount>
 </TranResponse>
</RStream>
</GiftTransactionResult></GiftTransactionResponse></soap:Body></soap:Envelope>

Web Services XML Example: Non Encrypted Swiped PrePaid NoNSFSale: Request

User-Agent: MPS Transact 1.2.0.5
Content-Type: text/xml; charset=utf-8
SOAPAction: http://www.mercurypay.com/GiftTransaction

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>
 <GiftTransaction xmlns="http://www.mercurypay.com">
 <tran><?xml version="1.0"?>
 <TStream>
 <Transaction>
 <IpPort>9100</IpPort>
 <MerchantID>595901</MerchantID>
 <OperatorID>test</OperatorID>
 <TranType>PrePaid</TranType>
 <TranCode>NoNSFSale</TranCode>
 <InvoiceNo>9</InvoiceNo>
 <RefNo>9</RefNo>
 <Memo>MPS Transact 1.2.0.5</Memo>
 <Account>
 <Track2>6050110000012485491=250110117</Track2>
 </Account>
 <Amount>
 <Purchase>2.25</Purchase>
 </Amount>
 </Transaction>
 </TStream></tran>
 <pw>xyz</pw>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

64

 </GiftTransaction>
</soap:Body>

</soap:Envelope>

Web Services XML Example: Non Encrypted PrePaid NoNSFSale: Response

<?xml version="1.0" encoding="utf-8"?><soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><soap:Body><GiftTransactionResponse
xmlns="http://www.mercurypay.com"><GiftTransactionResult><?xml version="1.0"?>
<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>Approved</TextResponse>
 <UserTraceData></UserTraceData>
 </CmdResponse>
 <TranResponse>
 <MerchantID>595901</MerchantID>
 <TranType>PrePaid</TranType>
 <TranCode>NoNSFSale</TranCode>
 <InvoiceNo>9</InvoiceNo>
 <OperatorID>test</OperatorID>
 <AcctNo> 6050110000012485491</AcctNo>
 <RefNo>469955</RefNo>
 <AuthCode>469955</AuthCode>
 <Amount>
 <Authorize>2.25</Authorize>
 <Purchase>2.25</Purchase>
 <Balance>79.25</Balance>
 </Amount>
 </TranResponse>
</RStream>
</GiftTransactionResult></GiftTransactionResponse></soap:Body></soap:Envelope>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

65

U.S. Pin Debit, EBT, FSA, CheckAuth, and E-Commerce

U.S. PIN Debit
PIN Encryption and Supported Peripherals
PIN encryption uses a triple algorithmic block cipher based on the strictly regulated injection procedures of the Data
Encryption Standards (DES). This procedure is referred to as Triple DES. All injection facilities used to load TDES encryption
keys and act as custodians to this PIN encryption process must be certified by an external auditor per the Accredited Standards
Committee PIN Security Compliance Guidelines or T-G3 certification. The PCI Council also maintains compliance standards for
PIN entry devices (PED) for the broader peripheral device market called PIN Transaction Security (PTS).

Integration Best Practices: Please see the PCI Security Standards Council, https://www.pcisecuritystandards.org for
current regulations pertaining to PTS/PED compliance standards.

This TDES format is the PIN Entry Device standard used by the banking and payment securities industry to encrypt the end
users 4-6 digit numeric Personal Identification Number (PIN). The encrypted PIN (using a XML data element called <PINBlock>)
is sent with the debit transaction for processing along with a unique encryption key generated at the time of the transaction.
This key management is in a format called "Derived Unique Key Per Transaction" or DUKPT. (The encrypted PIN key is sent
using a XML data element of <DervdKey>).

For U.S. PIN debit, when a cardholder enters their PIN, any PED/PTS compliant peripheral device generates and passes back to
the POS, the PINBlock and DervdKey in the established TDES and DUKPT formats. It is because of this that Mercury does not
circulate a prescribed list of supported PIN Pad peripherals. Any developer doing a direct (non-point-to-point/E2E integration)
to MercuryPay who wishes to support U.S. PIN debit may choose any compliant device that supports TDES and DUKPT key
management. All modern PIN pads can be injected with a TDES/DUKPT key to generate the two necessary data elements
Mercury requires. Developers are thus free to do direct integrations to the PIN entry device of their choice using the device
manufacturer's SDKs, drivers and APIs.

To allow proper functionality of PIN debit and to avoid encryption errors with a mismatched DervdKey and PINBlock, PIN pads
must be injected with the appropriate Mercury TDES PIN encryption key.

 At the time of this writing, for testing PIN devices over Mercury’s developer platform, the Mercury-Global East
TDES Test Encryption Key (KSN=D30100) is used. Note: KSNs are used to designate a specific key and is
typically the first 6 of the complete Derived Key. KSNs do vary from vendor to vendor.

 At the time of this writing, for live production merchant accounts PIN pads request the Mercury-Global East
Platform (DUKPT) encryption key from Mercury's supported injection vendors.
 Both the test and production Mercury keys can be injected by several third party equipment vendors: POS

Data, JR POS Depot, Trimble and TASQ. Developer and their resellers are free to contact these vendors directly,
but must specify the Mercury key be injected when ordering.

 All PIN pad peripherals must be PCI PTS/PED compliant.

Integration Best Practices: When handling the PINpad integration directly, the derived key must be exactly 16 characters
in length. PIN pad ISO standards allow for a 20 character string typically using a filler value of “FFFF” as the first four
characters. Integrators will need to parses the right-most 16 characters of these strings before they are placed into the
transaction XML request.

Supported End-to-End (E2E) encryption/Point-to-point PIN entry devices
With the added security integrators are seeking in E2E encryption devices, allowing all card holder data to be encrypted at the
point of swipe, Mercury supports the industry leaders in cardholder data encryption with the devices of MagTek and IDTech.
Supported encrypted PIN entry devices include the MagTek IPAD, IPAD-KB and IPAD-SC and the IDTech Sign & Pay. All of these
devices use USB-HID interaction protocols except for the IPAD-KB which allows for a fixed keyboard emulation output. PIN
entry methods and formatting remains unchanged in these devices. Both PINBlock and DervdKey data elements are included
in the output protocol and accessible in the same manner and will be formatted in the XML request as when using non-E2E
encryption peripherals.

https://www.pcisecuritystandards.org/

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

66

As a validated and listed Level One Service Provider, Mercury follows the most secure standards available using TDES
formatted encryption and DUKPT key management for our E2E platform. Developers are first required to work with the device
manufacturer directly in order to integrate the requisite commands and extract the appropriate encrypted output data. That
output data is then parsed per the Mercury specifications and used to build the encrypted request sent either in an ActiveX or
Web Services formatted XML request to Mercury. For all E2E based transactions, and as yet another layer of security, Mercury
has arranged with MagTek and IDTech to inject a custom key into their devices that can only be decrypted by Mercury.
Mercury will validate four data elements sent to our servers for processing. Encrypted Source and Format are sent along with
Encrypted Key and Block. All four data elements are required. All four data elements are checked and only Mercury can
decrypt the encrypted data. Once in Mercury's secure decryption environment, the cardholder's data is decrypted and
validated before the transaction request is passed on to the processing networks for authorization. At this time, if the
transaction is a Debit: Sale or Return, the debit PINBlock and DervdKey are passed on intact to their decrypting destination.

Because the industry formats for E2E encryption methods are evolving, and especially with the significantly increased details
generated by the PCI Council on the subject of Point-to Point encryption requirements, Mercury's security officers are
continually reviewing all levels of how Mercury can maintain the highest level of encryption methods while adopting
additional, emerging encryption formats and peripherals.

U.S. PIN Debit Required Transactions
Debit: Sale and Debit: Return transactions are required for Mercury PIN debit certification. Using "CashBack" as an amount
sub-field is an optional feature with Debit: Sale. Additionally, developer may implement the use of "CardLookup" to determine
debit card usage.

Integration Best Practices: Because of the real time nature of debit processing there is not a PIN-based equivalent for
VoidSale, Adjust, PreAuth, or PreAuthCapture transactions. Debit transactions will either be withdrawn from the
cardholder's account with a Debit: Sale or be added to the account by Debit: Return.

Note: All PIN based debit transactions utilize Track2 in their XML formatting. PIN debit transactions can only be swiped.
Neither the Debit Sale nor Return can be manually entered.

U.S. PIN Debit XML request and response examples
This example is an encrypted Debit Sale with cash back using an E2E encrypted enabled device on a MerchantID that is both
E2E and token enabled. Debit transactions may never be sent "ByRecordNo" using a stored Token yet note in this example the
requirement of including the Frequency and RecordNo tags. This is required when sending a debit transaction to a Token
enabled Merchant ID and is only used to validate the transaction to the merchant's settings. This example contains a request
for a one time Token RecordNo. It would fail otherwise returning an error that the merchant setting requires a RecordNo. It is
important to know that once past the merchant setting check, the token request will be ignored and a token will not be
returned.

Debit Sale request:

<?xml version="1.0"?>
<TStream>
 <Transaction>
 <MerchantID>395347308=E2ETKN</MerchantID>
 <TranType>Debit</TranType>
 <TranCode>Sale</TranCode>
 <InvoiceNo>30</InvoiceNo>
 <RefNo>30</RefNo>
 <Memo>MPS Example XML v1.0</Memo>

<Frequency>OneTime</Frequency>
<RecordNo>RecordNumberRequested</RecordNo>

 <Account>
 <EncryptedFormat>MagneSafe</EncryptedFormat>

<AccountSource>Swiped</AccountSource>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

67

<EncryptedBlock>005234EAD7AD5A279B8FB947BC15A123FFD775D03386B54F
6B37CB54AB33106FFC105588E28B0799</EncryptedBlock>

<EncryptedKey>9500030000040C20001D</EncryptedKey>
 </Account>
 <Amount>
 <Purchase>2.00</Purchase>
 <CashBack>0.50</CashBack>
 </Amount>
 <PIN>
 <PINBlock>0A04E4C40F6A41B2</PINBlock>
 <DervdKey>3D0100000B200007</DervdKey>
 </PIN>
 </Transaction>
</TStream>

Debit Sale Response:

<?xml version="1.0"?>
<RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>APPROVED</TextResponse>
 <UserTraceData></UserTraceData>
 </CmdResponse>
 <TranResponse>
 <MerchantID>395347308</MerchantID>
 <AcctNo>400300XXXXXX6781</AcctNo>
 <CardType>DEBIT</CardType>
 <TranCode>Sale</TranCode>
 <CaptureStatus>Captured</CaptureStatus>
 <RefNo>0032</RefNo>
 <InvoiceNo>30</InvoiceNo>
 <OperatorID>MPS Operator</OperatorID>
 <Memo>MPS Example XML v1.0</Memo>
 <Amount>
 <Purchase>2.00</Purchase>
 <Authorize>2.50</Authorize>
 <CashBack>0.50</CashBack>
 </Amount>
 </TranResponse>
</RStream>

CardLookup
The CardLookup transaction allows integrators to build into their system a way to get the card usage capabilities of a card for
use in verifying card types and functionalities such as PIN First programs. Although first developed on MercuryPay for FSA
developers utilizing a complicated Web Services call, the CardLookup functionality has been adapted and simplified for both
platforms using a transaction request with TranCode=CardLookup. For added security, CardLookup may be requested via and
E2E/P2P encrypted peripheral and may be requested to return a token/RecordNo in the response.

CardLookup XML request and response examples:

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

68

<?xml version="1.0"?>
<TStream>
<Transaction>
<MerchantID>595901</MerchantID>
<TranType>CardLookup</TranType> //Note there is no TranCode used in this request
<Memo>JBsPOS 7.5.0.2</Memo>
<Account>
 <Track2>4003000123456781=13055025432198712345</Track2>
</Account> //may also be sent with encryption elements and a request for RecordNo.
 </Transaction>
</TStream>

Utilizing DataCap Systems' Pre-existing ActiveX Controls for VeriFone 1000se and Ingenico i3070/i6550
Freely distributed with the DSIClientX are pre-existing ActiveX controls (IngenicoRABX and Ver1000X.ocx) developed by
DataCap as an aid to developers wishing to have an easily accessible, serial device control using these devices. Integration
documentation is available directly from DataCap Systems, is included in the Mercury Developer Portal SDK materials or my
contacting your developer support representative.

 Controls are provided for VeriFone 1000SE, the Ingenico i3070 and i6550. These controls increase development time

and make the integration simpler by eliminating the need to handle the COM port communications directly.
 The developer must work within the existing flow of the .ocx methods and cannot customize control of the buttons,

prompt message text.
 Using the supplied controls allows only synchronous processing of PIN based transactions.
 These controls have been around for many years, are in wide use and have proven successful in the field. Only the

1000se is still being manufactured; though still in circulation, both Ingenico devices have been EOL by the
manufacturer and are no longer supported. Replacement devices have not been announced.

EBT Food Stamp and Cash Benefit Cards

EBT cards require cardholder PIN entry and may be a strict food stamp designated card, a debit like Cash benefits card or
combination of both. They may be manually entered yet do not enforce an expiration date or security code verification
requirements.

An EBT food stamp customer is able to purchase eligible food items from grocery stores and convenience stores with their
benefits card, eliminating the traditional paper food stamp process. In order to accept this form of tender, Merchants must
register with their state’s Food and Nutrition Services agency and obtain an FNS number. Not all grocery items are eligible and
developers must work with State FNS agencies prior to development to understand the State's eligible product criteria.

The EBT cash benefits customer is able to use the card like a debit card. Qualified EBT customers can receive cash from an
ATM, pay for goods and services, and receive cash back with a purchase, from participating merchants with any POS system
that supports this functionality. Merchants are not required to register with a state agency. Mercury recommends that all
systems integrated to PIN debit also support EBT cash transactions.

ISO Card Formatting for EBT cards
State issued EBT cards are not required to follow the ABA Financial card ISO formats that is the expected standard for credit
and Debit cards. As EBT cards are government encoded stored value cards, loaded monthly, do not use an expiration date, and
have limited use based on eligibility, many States omit the Track1 format code "B" that is typical of all other financial cards.
For this reason, Track2 must always be used and parsed when sending EBT transaction requests.

Integration Best Practices: Unlike PIN debit, Food Stamp Sale, Food Stamp Return and EBT Cash Sale transactions can be
manually keyed if necessary. Note that industry recorded use of manually entered EBT cards is approximately 30%,
making it important from a business perspective to support. Whether swiped or manually entered, customers must still
enter their PIN to complete the transaction. Note: EBT Cash Return is not supported. In this case, cash is returned to the
card holder directly. Cash back is only allowed on EBT Cash Sale requests.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

69

Required EBT Transactions and Balance Recommendations
EBT is a unique TransactionType with several unique TranCodes specific to EBT. If supporting food stamp transactions,
Foodstamp Sale, Foodstamp Return, and FoodstampVoucher Sales are required for certification. If supporting cash benefit
transactions, EBT Cash Sale is required for certification.

Integration Best Practices: From an end user perspective, it is important to support Foodstamp Balance and Cash Balance
as separate transaction requests. That said, balance amounts are returned by the processor on all EBT transactions and
should be printed on all EBT receipts, whether approved or declined.

Food Stamp Voucher Sales
FoodStamp Voucher Sales are similar to a Credit: VoiceAuth transactions and are a requirement of certification. Merchants
obtain a tablet of numbered food stamp vouchers from their Food and Nutrition Service (FNS) Agency and call the appropriate
state authorization number to receive an authorization code. To get paid on the authorization, merchants must submit the
transaction on the POS, including all required data: (1) card number, (2) authorization code, and (3) voucher number from the
printed voucher. A PIN is not required for a Voucher Sale.

For a comprehensive list of EBT XML examples, please contact your developer support representative.

Flexible Spending Account (FSA)

A Flexible Spending Account (FSA) is a tax-favored program offered by employers that allows their employees to pay for
eligible out-of-pocket health care and dependent care expenses with pre-tax dollars. FSA allows consumers to pay for eligible
health care expenses using pre-tax dollars.

Mercury supports two necessary components of the FSA transaction approval cycle:

 FSA transactions
 An ActiveX or Web Services-based FSA registered Card Lookup/BIN Lookup database used to identify valid FSA

BIN ranges

Developers will need to independently register with SIGIS, an organization responsible for promoting an industry standard to
meet IRS requirements for operating an Inventory Information Approval System (IIAS). The IIAS database is used to determine
which items qualify for FSA tender at the point of purchase. For additional information on SIGIS, go to http://www.sig-
is.org/en/index.asp For a comprehensive overview of Federal FSA guidelines, please see
https://www.fsafeds.com/fsafeds/SummaryofBenefits.asp#WhatIsFSA .

Integration Best Practices: Mercury recommends that developers immediately begin the SIGIS registration process upon
beginning the FSA integration.

Required FSA Transaction Types
FSA is a Credit TransactionType. There are two FSA TranCodes required for certification: FSASale, ReverseFSASale.
FSAPrescription is required to be included in the Amount field of all FSASale transactions. Additionally, VoidSale, Partial
Approvals and CardLookUp functions are requirements for FSA certification.

Integration Best Practices: Debit FSASale and Debit ReverseFSASale are currently unavailable. Also, contrary to the
mention of this in the DSIClientX Specifications, integrators do not send Track2 Data in a ReverseFSASale. Send AcctNo and
ExpDate only in the Account field.

FSA and Required Void Support
POS developers are required to add void functionality in addition to ReverseFSASale in the event the ReverseFSASale fails or is
declined. The VoidSale backup is needed in the event the issuer has trouble handling the reversal at the time of the transaction
request.

http://www.sig-is.org/en/index.asp
http://www.sig-is.org/en/index.asp
https://www.fsafeds.com/fsafeds/SummaryofBenefits.asp#WhatIsFSA

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

70

Partial Approvals
Partial approval with FSA transactions allow for an FSA card to be brought to a $0.00 balance when the purchase amount
exceeds the available balance on the card and requires POS systems code to forward a balance due prompt. In the event of a
partial approval, the POS will receive a TextResponse=PARTIAL AP and the Authorized amount value will be less than the
originally requested Purchase amount. With this information returned in the response, POS developers can make provisions to
forward a balance due and prompt for another form of payment to complete the purchase.

To test the partial approval sequence, use the Mercury supplied VISA FSA test card (4005550000000480) and send an FSASale
request in the exact amount of $23.54. This is a trigger amount that simulates a partial approval response with PARTIAL AP in
the TextResponse and an Authorize amount of $20.00. The example below is using a non encrypted or token enabled
Merchant ID to send the request. All FSA Transactions are required to first send a CardLookup request to confirm usage. The
XML transaction request for <CardLookup> is outlined in section 12.0 of the DSIClientX Programming Interface Specifications.
Web Services developers may use this same CreditTransaction level <CardlookUp> in their soaped wrapped web services calls:

<?xml version="1.0"?>
<TStream>

<Transaction>
<MerchantID>595901</MerchantID>
<TranType>CardLookup</TranType>//Note there is no TranCode used in this request
<Account>

<Track2>4005550000000480=12055025432198712345</Track2>
</Account>

</Transaction>
</TStream>

And in the CardLookup response, receive the confirmation from Mercury's BIN tables of FSA usage

<?xml version="1.0"?>
<RStream>
<CmdResponse>

<ResponseOrigin>Server</ResponseOrigin>
<DSIXReturnCode>000000</DSIXReturnCode>
<CmdStatus>Approved</CmdStatus>
<TextResponse>SUCCESSFUL LOOKUP</TextResponse>
<UserTraceData></UserTraceData>

</CmdResponse>
<TranResponse>

<MerchantID>595901</MerchantID>
<AcctNo>4005550000000480</AcctNo>
<ExpDate>0512</ExpDate>
<CardUsage>FSA</CardUsage>
<CardType>VISA</CardType>
<TranType>CardLookup</TranType>
<TranCode>CardLookup</TranCode>

</TranResponse>
</RStream>//Note: if requested with a Token Frequency and RecordNumberRequested, Mercury
would return a Token record number as well.

With FSA confirmed, the FSA Sale may now proceed:

XML Example, FSASale Request triggering PARTIAL AP
<?xml version="1.0"?>
<TStream>
 <Transaction>
 <MerchantID>595901</MerchantID>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

71

 <TranType>Credit</TranType>
 <TranCode>FSASale</TranCode>//The partial "allow" is built into this tranaction set
 <InvoiceNo>11</InvoiceNo>
 <RefNo>11</RefNo>
 <Memo>MPS Transact 1.2.0.4</Memo>
 <Account>
 <Track2>4005550000000480=12055025432198712345</Track2>
 </Account>
 <Amount>
 <Purchase>23.54</Purchase>
 <FSAPrescription>10.00</FSAPrescription>//Required as a subfield for all FSA
 </Amount>
 </Transaction>

</TStream>

XML Example, FSASale Response indicating Partial Approval

<?xml version=”1.0”?>
 <RStream>
 <CmdResponse>
 <ResponseOrigin>Processor</ResponseOrigin>
 <DSIXReturnCode>000000</DSIXReturnCode>
 <CmdStatus>Approved</CmdStatus>
 <TextResponse>PARTIAL AP</TextResponse>//This will always indicate a different

authorize amount
 <UserTraceData></UserTraceData>
 </CmdResponse>
 <TranResponse>
 <MerchantID>595901</MerchantID>
 <AcctNo>4005550000000480</AcctNo>
 <ExpDate>0512</ExpDate>
 <CardType>VISA</CardType>
 <TranCode>FSASale</TranCode>
 <AuthCode>VI2354</AuthCode>
 <CaptureStatus>Captured</CaptureStatus>
 <RefNo>0019</RefNo>
 <InvoiceNo>11</InvoiceNo>
 <Memo>MPS Transact 1.2.0.4</Memo>
 <Amount>
 <Purchase>23.54</Purchase>//Original purchase from request
 <Authorize>20.00</Authorize>//actual authorized amount
 </Amount>

 <AcqRefData>aEb900700000555404cRBBCd5e10fMj101376090107235400k0057840C0000000023
54lA m000005</AcqRefData> //save this data if required for Reversal

 <ProcessData>|00|410100200000</ProcessData>
 </TranResponse>
 </RStream>

FSA XML Transaction Requests
XML requests can be found in section 7.0 of the DSIClientX™ Programming Interface Specifications.
Please note the following specification variances when integrating to Mercury:

 Although <Zip> is in bold in the specifications, this field is not mandatory to send in FSA Credit requests.
 As with all transaction types, do not use <TerminalID>; use <TerminalName> instead.
 Do not send Track2 data in the ReverseFSASale transaction request. AcctNo and ExpDate must be used in the XML.
 Purchase amount and FSAPrescription are currently supported in the <Amount> field.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

72

Integration Best Practices: If the ReverseFSASale returns a response other than CmdStatus="AP" and
TextResponse="Approved” a VoidSale should be used.

Developer FSA Testing
FSA Visa Test Credit Card: 4005550000000480=12055025432198712345, Exp: 05/12
Contact your Developer Support representative for obtaining a physical FSA card

Check Authorization

Check authorization is a risk screening tool which authorizes a check by searching multiple national databases for indications
that a customer has written bad checks. If there is a record of bad checks written by the customer, the response to the
CheckAuth request will be “Declined”; otherwise the response will be “Approved.”

 The merchant must sign up for the check verification/guarantee service through Mercury.
 Check authorization is based on the customer’s history, not necessarily the history of the checking account available

funds.
 This transaction is not a form of electronic payment. Therefore, at the close of business, the approved check amounts

will not show as part of the Host batch total. Merchants must still physically deposit the checks at their bank in order
to get paid.

 At the time of this writing, Mercury does not support “Check 21” (the electronic submission of a digital image of the
check to the bank for payment, in lieu of the actual paper check) or “Check Conversion” (the information from the
check is scanned and converted electronically to data which is then sent via ACH for a one time electronic payment.)

 DSIClientX™ Programming Interface Specifications contains some information not applicable to Mercury’s platform:
1. Mercury does not support swipes of the driver’s license magnetic stripe (no standardized, national format

exists at this time).
2. Check routing/account numbers must not be manually entered (fraud prevention measure).
3. Mercury supports either an electronic MICR scan of a personal check, or a manually-entered driver’s license

number and state code.

Integration Best Practices: Check authorization testing. For development testing purposes, check RoutingNo and AcctNo
information must be manually input in the absence of a check for scanning.

For the test of a MICR check over Development servers at x1.mercurydev.net :

Merchant ID = 334110
RoutingNo = 559012138
AcctNo = 91971309
SequenceNo = 3241
StateCode = 98 (Always 98 for MICR)
Amount = $25.00
(Bank ID =095000)

For the test of a driver’s license over our production servers at x1.mercurydev.net:
Merchant ID = 334110
DriversLicense = Z99999
DateOfBirth = MMYY
SequenceNo = 3241
Amount = $25.00
StateCode = 15

XML Examples comparing MICR and Driver's License Requests using the above data:

<?xml version="1.0"?>
<TStream>
 <Transaction>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

73

 <MerchantID>334110</MerchantID>
 <OperatorID>test</OperatorID>
 <TranType>CheckAuth</TranType>
 <TranCode>Sale</TranCode>
 <InvoiceNo>3</InvoiceNo>
 <RefNo>3</RefNo>
 <Memo>MPS Transact 1.2.0.5</Memo>
 <Account>
 <MICR>Reader</MICR>
 <RoutingNo>559012138</RoutingNo>
 <AcctNo>91971309</AcctNo>
 <SequenceNo>3241</SequenceNo>
 <StateCode>98</StateCode>
 </Account>
 <Amount>
 <Purchase>25.00</Purchase>
 </Amount>
 </Transaction>

</TStream>

<?xml version="1.0"?>
<TStream>
 <Transaction>
 <MerchantID>334110</MerchantID>
 <OperatorID>test</OperatorID>
 <TranType>CheckAuth</TranType>
 <TranCode>Sale</TranCode>
 <InvoiceNo>3</InvoiceNo>
 <RefNo>3</RefNo>
 <Memo>MPS Transact 1.2.0.5</Memo>
 <Account>
 <Track2>Z99999=</Track2>
 <StateCode>15</StateCode>
 <DateOfBirth>0880</DateOfBirth>
 <SequenceNo>3241</SequenceNo>
 </Account>
 <Amount>
 <Purchase>25.00</Purchase>
 </Amount>
 </Transaction>

</TStream>

For a list of state codes, required when submitting CheckAuth using a keyed driver’s license number, contact your developer
support representative or please refer to the Global State Codes for CheckAuth.pdf, included in the MercuryPay SDK on the
Developer portal. Use of the two character alpha codes indicating the state abbreviation is acceptable.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

74

Mercury’s E-Commerce Solutions

MercuryPay HostedCheckout™ PA-DSS Scope Removal for E-Commerce Web Designers
Mercury’s HostedCheckout with integrated MToken™ technology provides a secure payment API for ecommerce website
developers by redirecting the transaction path to a Mercury secure payment site. The HostedCheckout solution
supplements the eCommerce checkout process, by providing a customized payment page for collection of card data.
Because the payment page is hosted by Mercury, card data is kept off of the eCommerce solution provider’s servers,
keeping them from qualifying as a “Service Provider” as defined by the PCI Council. HostedCheckout does not replace the
checkout process entirely, just the handling of sensitive credit card data.

 HostedCheckout eliminates the need for eCommerce web developers to handle cardholder data.

 Mercury’s tokenization processing returns a token record that may be stored thereby helping merchants achieve
PCI compliance and enabling them to implement features such as recurring billing and card on file.

Four Step Transaction Process: Overview

1. Initiate the Payment Process. The web site developer initiates a call to a Mercury web service (server to server) to
start the checkout process and obtain a unique PaymentID. Transaction data fields such as the MerchantID and
the TotalAmount are passed at this time to Mercury.

2. Transparent Redirect to the Mercury HostedCheckout page and Secure Processing. The web site developer
redirects the user to the Mercury HostedCheckout page. The unique PaymentID is passed to Mercury in hidden
fields using an HTTP form post. The customer will enter their credit card information on Mercury’s hosted page
and then press a Submit Payment button. The payment is processed and the user is redirected back to the
ecommerce site.

3. Verify Payment. The VerifyPayment method in the HostedCheckout web service is used to confirm the successful
status of a payment. This allows the ecommerce developer to validate the transaction approval or decline status
and includes additional information about the payment after Mercury has processed it, including receipt data.

4. Acknowledge Payment Completion. To close this active payment session, the ecommerce site calls the
AcknowledgePayment web method. This communicates that the payment information from the previous step has
been received, and the unique PaymentID is no longer needed. The HostedCheckout web service deletes the
unique PaymentID and it may no longer be used.

For additional information and complete platform specifications for Mercury’s HostedCheckout solutions, please contact
your developer support liaison for complete specifications and Integration Guide.

Gateway Ecommerce Solutions and General Specifications

Merchants can process ecommerce transactions conveniently through a direct integration to Mercury’s gateway partner, Plug
‘N Pay or any other gateway certified on Global Payment’s EAST platform. With integrated ecommerce solutions, the following
must be observed:

Separate/Multiple MID capability
Ecommerce accounts need to have a separate MID from the brick and mortar account. With ecommerce accounts that
integrate directly into a POS, the POS will need to support multiple MID’s (MMID). MID’s need to be coded to at least 24 alpha-
numeric characters. Developers incorporating ecommerce processing modules into their POS software should also support
MMID as ecommerce transactions must be processed separately from card present and MOTO transactions.

Transaction dates/Shipping
For ecommerce environments, the transaction date is the shipping date, not the order date. Note: if a product is shipped after
seven days, it must be PreAuthed again and then Captured. CVV response code should be saved from the original PreAuth for
chargeback purposes.

Ecommerce card data storage using MToken

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

75

Ecommerce merchants that ship merchandise beyond a 24-hour period must support PreAuth/PreAuthCapture transaction
types and are required to implement either tokenization support for secure storage and subsequent usage of card data or
process these transactions on a PA-DSS validated system. These integrations need to store and maintain token data
(RecordNo, Frequency) and AuthCode, AcqRefData appropriately for subsequent use. Validated systems must store card data
in accordance with the PCI/PA- Data Security Standards (strong encryption methods, truncation and internal data security.)
Under no circumstances can track data be stored for any length of time. Accordingly, card security data, (CVV2, CVC2, CID)
used for the PreAuth must not be retained for any length of time.

Required transactions
At a minimum, all ecommerce integrations must support PreAuth, PreAuthCapture, and Return transaction types (although in
integrations where there is an immediate exchange of merchandise within 24 hours of purchase, Sales and Returns transaction
types can be substituted).

<Memo Tag> - POS Model and Version
The Memo data element should be coded dynamically in all XML transaction requests; it is used to identify the POS model and
version. This use of the Memo tag is a certification requirement.

CVV and AVS data
For security reasons in a card-not-present environment, and for the best qualifying processing rates, ecommerce credit
integrations are highly recommended to support cardholder identity validation and fraud prevention controls. It is
recommended that AVS (Address/Zip Verification) and CVV2/CVC2 data be incorporated in the transaction request. Though a
failed AVS or CVV match will not always result in a declined response, it is important to code in options for proceeding with the
transaction in the event of an AVS/CVV mismatch.

Ecommerce Gift Integrations using CRC or CVV for Manual Input
CRC (see Gift/PrePaid for CVV Security Code details). The card number and CRC data should be sent as Track2 data:

 <Account>
 <Track2> 6050110000000123456=13</Track2>
 </Account>

Plug ‘n Pay Integration Methods: Integration Method: SmartScreens
Using Smart Screens, your code never comes into contact with sensitive cardholder data, thereby removing your system
from scope of sensitive payment data and the PCI requirements to protect it.
Smart Screens integration information can be found by going to the Merchant Administration Area, then
“Documentation/FAQ”, then “Integration Specifications.”

Smart Screens can be customized by going to the Merchant Administration Area, then “Account Settings”.

Smart Screens can be configured to use Address Verification (AVS) and CVV2 by going to the Merchant Administration Area,
then “FraudTrak.”

Example of how to use Smart Screens in an iframe:
<iframe src="https://pay1.plugnpay.com/payment/pay.cgi?publisher-name=mercurydem&card-amount=1.00"><p>Your
browser doesn't support iframes</p></iframe>

SmartScreens is a checkout page, hosted by Plug’n Pay.

1. The shopping cart behaves normally as the customer is shopping and adding items to their shopping cart.
2. When the customer is ready to check out, they’re redirected to the SmartScreens checkout page on Plug’n

Pay’s website.
 Some commercial shopping carts support SmartScreens as the integration method. That means they support

MercuryGift.
 The checkout web page is generic in look and feel and there is little that can be done to make it look like the

merchant’s website.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

76

Plug ‘n Pay Integration Methods: EasyCart is a very basic shopping cart, constructed using a tool. The merchant’s web
designer logs into Plug’n Pay’s website and uses this tool to:

1. Add all the items details along with prices, descriptions, and other related product information.
2. Create pages for customers to view their shopping cart and check out.
3. Create order form web pages.

 The generated files are then downloaded and copied to the merchant’s own website.
 The web pages are generic in look and feel, but a more advanced web developer can manipulate them to make them

fit in with the look and feel of the merchant’s website.
 For checking out, the customer is redirected to Plug’n Pay’s SmartScreens where payment information is entered.

Plug ‘n Pay Integration Methods: Traditional Integration
Developer collects payment data, then sends to Plug’n Pay

Integrating to Plug’n Pay using any other integration method requires you to gather payment data before submitting it. You
must meet PCI compliance requirements outlined at https://www.pcisecuritystandards.org. For a complete list of
integration methods and APIs, go to the Merchant Administration Area, then “Documentation/FAQ”, then “Integration
Specifications

Plug ‘n Pay Integration Methods: Authorize.NET Emulation

If a shopping cart isn’t integrated to Plug’n Pay, but is integrated to Authorize .NET, the Plug’n Pay “Authorize.NET
emulation service” can be used for credit only. Plug’n Pay understands transactions meant for Authorize.NET.

MercuryGift Compatible with Plug’n Pay

 Most shopping carts that have integrated to Plug’n Pay for credit card processing use the normal Plug’n Pay
integration method. They do not instantly support gift. They’ll have to add MercuryGift as a feature for the normal
integration method.

 If the shopping cart has Plug’n Pay SmartScreens as an option, Mercury Gift will work. MercuryGift is not supported
using Plug’n Pay’s Authorize.NET emulation service.

Plug’n Pay Development and Testing Information
The Plug’n Pay Merchant Administration Area contains development resources.
https://pay1.plugnpay.com/admin

 Plug’n Pay can be used to send credit and Mercury Gift transactions to Mercury.

 For development and testing, the Plug’n Pay account to use is:
Username: mercurydem
Password: mercurydem1

 To view orders, go to the Merchant Administration Area, then “Order Database.”

 To view transaction details, go to the Merchant Administration Area, then “Transaction Administration.”

*Note that the same Plug’n Pay payment gateway addresses are used for sending both development and
production transactions.

https://www.pcisecuritystandards.org/
https://pay1.plugnpay.com/admin

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

77

 Canadian EMV/Chip and PIN Integration Requirements

Overview
EMV (Europay, MasterCard and VISA) is an international standard for payment processing combining specially
designed cards with embedded microchips. These cards are inserted into compatible EMV card readers which
then use the customer’s PIN for authenticating credit and debit card transactions. Mercury has partnered with
DataCap Systems, Inc., in simplifying the integration and the Canadian certification process.

Canadian EMV/Chip and PIN Integration Components
Mercury's EMV solution is certified for use in Canada using the VeriFone Vx810 and three components supplied by DataCap Systems:
a SQL Server instance, a NETePay application, NETePayML – MercuryEMV, and the DSIEMVClientX application. Vx810 test kits are
shipped directly from Mercury. Test kit includes VeriFone Vx810, cables, B2 Chip and PIN test cards, and additional cards used for
the EMV certification process. As the process for certification includes involvement with Mercury's Canadian EMV sponsors to the
Canadian Card Associations and Debit Authority, developers will first need to present an EMV project proposal in the form of a
Certification Project Outline.

Canadian EMV/Chip and PIN Certification Project Outline
An EMV Certification Project outline must be on file with Mercury's EMV Sponsors in order begin the integration process. The
project outline details a high level checklist of architecture and functionality that will be supported. The project outline will be sent
to you by your developer support representative. Many fields have been pre-checked as a part of the Mercury, DataCap and Vx810
solution, however the following is a guide to completing the remaining outline:

1. 1.1– All Contact Information and Target Market(s)
2. 2.0 – All
3. 3.1 – All
4. 3.2 – Application Information, Communication, PCI-DSS Compliance status
5. 3.3 – Diagram of your POS solution
6. 3.4 – Type of Solution
7. 3.5 – Check AMEX and/or DISC boxes if supported, Settlement Option(s)
8. 3.6 – Check Duplicate Override box if you will be supporting.

Upon receipt of the completed Project Outline, your Mercury developer support representative will review and confirm all the fields
have been completed properly and then forward the document to our Canadian EMV sponsors. A test EMV device ID is then
requested. The device ID is the unique MerchantID number associated with each device. Once Mercury receives confirmation of the
device ID, the Vx810 test kit will be shipped to the developer.

Developer Note: In multi lane environments, each lane will require a separate MerchantID.

Setting up the DataCap Components
At any time, the developer may access and download the DataCap components. The following components, installed in the order
listed, coordinate all the required functionality of the EMV solution:

1. First, developers will need the appropriate Datacap instance of SQL. Install SQL before NETePayML-MercuryEMV is
installed. Use the following link to check requirements and download the applicable Datacap instance of SQL.
http://www.datacapepay.com/netepay4.htm

http://www.datacapepay.com/netepay4.htm

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

78

2. Below is the link for the specific Mercury NETePay used for the certification process: NetePayML – MercuryEMV. See full
details below for instructions on configuring NETePay. Important Note: production installations will vary. This process is
for testing and certification purposes only. Details on production procedures are outlined below as well as on the DataCap
Epay website. The following link direct developers to DataCap's dev-netepay/mercury link and is for certification purposes:
http://www.datacapepay.com/software/dev-netepay/mercury/

3. Use the following link to download the DSIEMVClient Application and the DSIEMVClientX Programming Interface
Specification. Select the download links "For Software Developers and Integrators."
http://www.datacapepay.com/dsiemvclient.htm

Install and configure the NETePayML – MercuryEMV

This NETePay application is designed for use with Mercury's certification network.

When first installed, the application will populate a screen with the Serial Number, Session Code and Machine ID specific to
the computer on which it was installed. An activation code is required to register the application. This will be required per
each install.

http://www.datacapepay.com/software/dev-netepay/mercury/
http://www.datacapepay.com/dsiemvclient.htm

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

79

To complete the NETePay activation process, contact your developer support representative with the Serial Number,
Session Code and Machine ID. Typically Mercury can return the Activation Code on the same day. A 14 day trial is
allowed.

To configure the NETePay TEST HOST, click on the cylinder icon or click Setup. A DSIGlobalEMV message will remind
developers that this is a development test environment only and cannot be used in production.

Clicking OK opens up the Setup NETePay Parameters where the following is populated:

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

80

 Confirm that the test BIN populates with 035700.

 Transport may be set to either IP Only, IP with Dial Backup, and Dial only. For your initial tests, you may leave
this defaulted to IP Only.

 If using the built in dial backup capabilities built in to NETePay, add the Mercury test Authorization Phone No.
1-888-859-9493 in the Global Authorization Phone No field

 The NETePay test IP Connection Information should default to the above single server address:
fe1.mercurydev.net

 Click on the Lane Setup to input your device ID here forth called Merchant ID. NOTE: Merchant ID is your
device ID. Click Add to input your 8 digit VeriFone Vx810 device ID given to you by your Mercury developer
support representative. The Description field is not passed in the transaction data. Recommended use is
device serial number or register lane reference.

Click Ok to return to the Lane Setup where you would add additional lanes if required or click OK to return to the Setup
NETePay Parameter’s screen.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

81

This completes the NETePay set up.

Developers Note: The NETePay application must be running when interacting with the Vx810. Note that there are two
sets of Logs that can be useful during the course of the integration, the NETePay logs and the DSIEMVClient logs. The
default location of these log files are available at:

C:\Program Files\Datacap Systems\NETePay\DATACAP_LOGS
C:\Program Files\Datacap Systems\EMVCanadianClient\DATACAP_LOGS

Canadian EMV/Chip and PIN Test Application
The EMVCanadianClient Test application is included in the files downloaded with DataCap’s NETePayML – MercuryEMV. This
helpful tool allows developers to immediately test all EMV related functionality, confirm connectivity, etc. in an independent
connection to the Vx810. To configure the EMVCanadianClient, confirm the following:

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

82

 Select Global 1 (VX810)

 Enter your Device ID in the Merchant ID field

 The IP/HostName is the standard loop back local address of 127.0.0.1

 Input your port where the device is connected in the Com Port field

 You will initially begin with a EMV ParamDownload, followed by the KeyChange to initialize the vx810

DataCap Systems' DSIEMVClientX Programming Interface Specifications
Integrators will follow the specifications outlined in the DataCap specifications to complete the integration.

 The DSIEMVClientX specifications are targeted to developers with previous experience with Datacap’s DSIClientX ActiveX
component and assume an understanding of the DSIClientX Interface Specification.

 DSIEMVClientX is a Windows ActiveX control that as a solution is certified to the Canadian EMV Card Association standards
to provide applications with the ability to process EMV (chip card) electronic payments. Applications integrated with
DSIEMVClientX fall under Datacap’s approved EMV certification and must also certify to this standard.

 The DSIEMVClientX software is designed to communicate exclusively with Datacap’s in-store NETePay server products using
Internet Protocol (IP). Messages exchanged between the DSIEMVClientX and the servers are encrypted for secure
transmission over open networks. This secure communications architecture provides the flexibility to configure systems
using LAN and/or WAN networks.

 DSIEMVClientX directly controls the VeriFone Vx810 on a PC COM (serial) port to manage all PIN pad interactions.

 The DSIEMVClientX control uses XML formatted requests and responses for transaction processing requests.

Supported Canadian EMV/Chip and PIN Transactions and Admin Functionality

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

83

Please refer to the DSIEMVClientX Programming Interface Specifications for XML element descriptions and usage. All Admin
transactions listed in the DSIEMVClientX Specifications are required and must be supported except for OfflineDeclineReport.

Canadian EMV/Chip and PIN General Integration Information

1. Mercury's EMV solution uses a Windows ActiveX control managed by DataCap Systems and supports the VeriFone
Vx810.

2. Interfacing with the VeriFone Vx810 The POS interfaces with the Vx810 device for all Transactions and Admin
functions except PadReset and KeyExchange.

 Use PadReset before and after each EMV transaction.

 Manual Credit transactions are supported with card data entered directly on the Vx810 device.

 Note for production deployment, each Merchant lane will use a single Vx810 device with its own specifically
designated MerchantID to process Credit and Canadian Debit EMV transactions. Each lane will therefore
always have its own separate batch at time of settlement.

 The current <PadType> when using the Vx810 is at this time is ‘Global1.’ Integrators should leave this field
configurable for additional PadTypes that may be added.

 Gratuity amount can be handled by the POS, included in the transaction request and sent as a sub-field of the
total or integrators may elect to send 'Prompt' in the actual gratuity tag for this to be handled at the device:
<Gratuity>Prompt</Gratuity>

3. Visa's EMV Chip liability shift occurred March 31, 2011. Since this time, Merchants are liable for Canadian card-present

fraudulent transactions using a Chip card. These fraudulent transactions are defined as "Counterfeit fraud," that is
fraudulent cards created by using stolen card data from the mag stripe, or for cards that are sent in the mail and stolen
before the intended recipients have received or activated them (also called "Cards not received fraud")

Canadian EMV/Chip and PIN Specification Details

Using <Print Data>
The DSIEMVClientX returns all required receipt data in the <PrintData> response. Every line of the <PrintData> response,
whether populated or left blank, is required to be printed on the transaction receipt. The DSIClientX Programming Interface
Specification includes many examples and additional references. Following are two examples of raw print data, a Visa EMV
credit transaction and an Interac EMV Debit transaction.

Print Data Returned from DSIEMVClientX for a Visa EMV credit transaction

<PrintData>
 <Line1>.MERCHANT ID: MPS00013</Line1> (MerchantID is the Device specific ID)
 <Line2>.</Line2>
 <Line3>. SALE</Line3>
 <Line4>.</Line4>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

84

 <Line5>.************0010</Line5>
 <Line6>.VISA ENTRY METHOD: CHIP</Line6> (Card Swipe Indicator/ICC)
 <Line7>.</Line7>
 <Line8>.DATE: 2010/12/12 TIME: 14:52:52</Line8>
 <Line9>.</Line9>
 <Line10>.INV#: 20101212125223APPR CODE: VI0747</Line10> (Invoice number and Apporval Code)
 <Line11>.RETRIEVAL #: 0004</Line11> (Retrieval Reference Number)
 <Line12>.</Line12>
 <Line13>.AMOUNT CAD$ 5.25</Line13>
 <Line14>.TIP CAD$ 2.22</Line14>
 <Line15>. ==========</Line15>
 <Line16>.TOTAL CAD$ 7.47</Line16>
 <Line17>.</Line17>
 <Line18>. APPROVED - THANK YOU</Line18>
 <Line19>.</Line19> (Note Not supplied—used for Debit)
 <Line20>.BY ENTERING A VERIFIED PIN, CARHOLDER</Line20>
 <Line21>.AGREES TO PAY ISSUER SUCH TOTAL IN</Line21>
 <Line22>.ACCORDANCE WITH ISSUER'S AGREEMENT WITH</Line22>
 <Line23>.CARDHOLDER</Line23>
 <Line24>.</Line24>
 <Line25>.</Line25>
 <Line26>.Application Preferred Name:</Line26>
 <Line27>.Visa Credit</Line27>
 <Line28>.AID:A0000000031010</Line28> (Application Identifier)
 <Line29>.TVR:000000C040</Line29> (Terminal Verification Results)
 <Line30>.TSI:F800</Line30> (Transaction Status Indicator)
 <Line31>.RESP CD:00</Line31> (Response Code)
 <Line32>.</Line32>
 <Line33>. NO SIGNATURE REQUIRED</Line33>
<PrintData>

Print Data Returned from DSIEMVClientX for an Interac EMV Debit transaction

<PrintData>
 <Line1>.MERCHANT ID: MPS00013</Line1> (MerchantID is the Device specific ID)
 <Line2>.</Line2>
 <Line3>. SALE</Line3>
 <Line4>.</Line4>
 <Line5>.************1933</Line5>
 <Line6>.DEBIT ENTRY METHOD: CHIP</Line6> (Card Swipe Indicator/ICC)
 <Line7>.ACCT TYPE: SAVINGS</Line7>
 <Line8>.</Line8>
 <Line9>.DATE: 2010/12/12 TIME: 16:01:38</Line9>
 <Line10>.</Line10>
 <Line11>.INV#: 20101212020110APPR CODE: 763105</Line11> (Invoice number and Approval Code)
 <Line12>.SEQ #: 0010010010</Line12>
 <Line13>.RETRIEVAL #: 0005</Line13> (Retrieval Reference Number)
 <Line14>.</Line14>
 <Line15>.AMOUNT CAD$ 3.33</Line15>
 <Line16>. ==========</Line16>
 <Line17>.TOTAL CAD$ 3.33</Line17>
 <Line18>.</Line18>
 <Line19>. 00 APPROVED - THANK YOU 001</Line19> (Bank Response Code and ISO Code)
 <Line20>.</Line20>
 <Line21>.</Line21>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

85

 <Line22>.Application Label:</Line22>
 <Line23>.Interac</Line23>
 <Line24>.AID:A0000002771010</Line24> (Application Identifier)
 <Line25>.TVR:8000008000</Line25> (Terminal Verification Results)
 <Line26>.TSI:7800</Line26> (Transaction Status Indicator)
 <Line27>.RESP CD:00</Line27> (Response Code)
<PrintData>

Canadian EMV/Chip and PIN Manual Entry for Credit Transactions
In the event of chip and/or magnetic swipe failures, the DSIEMVClientX and the Vx810 supports manual entry for Credit
Sale, Return, VoiceAuth (Force), VoidSale and VoidReturn.

In the event of a failed chip read, the Vx810 will remain active and prompt to end user to swipe the card. In the event the
card’s magnetic stripe also fails, the Vx810 will cancel the transaction after the third unsuccessful attempt and pass back to
the POS system an error: “Operation Cancelled 08.” Developers may use this error to build their own end user prompt to
either retry the transaction using manual entry or prompt to request another form of payment.

Developers Note: Card security codes (CVV, CV2, CID) are not used in Canada with the same prevalence as in the U.S.
The use of security codes while testing may trigger declines in the B2 EMV test cards. Card security data cannot be
entered on the Vx810.

Using DSIClientX and Vx810 for Processing Mercury Gift/Prepaid Transactions
All Mercury Gift/Prepaid transactions are supported when using the Vx810 and require a parallel install of the DSIClientX.
Account information (using GetPrePaidCardStripe) is obtained from the Vx810 device and passed to the DSIClientX (not the
DSIEMVClientX) which is then used to process the transaction.

Canadian EMV/Chip and PIN and Dial-Backup

1. Dial backup is supported within the EMV NETePay application.
2. Mercury’s Dial bridge unit and NETePay are required as is an analog phone line.
3. The Test Dial number is 1-888-859-9493.
4. If Mercury Gift/Prepaid transactions are supported, an additional Dial Bridge unit and second analog line are

required to route these transaction through the DSIClientX.

Duplicate Override EMV duplicate logic is the same as Mercury’s legacy Canadian Debit solution and is based on card
number and purchase amount only. Transactions with the same amount and on the same card will receive a Cmd Status:
Decline TextResponse: AP DUPE from the host. If a duplicate is required, developers can resend with the XML tag
<Duplicate>Override</Duplicate> in the request.

Canadian EMV Gratuity EMV Gratuity handing may be accomplished in one of two ways and parallels Mercury’s legacy
Canadian Debit solution. Gratuity can either be included in the total and directly sent in the request or by including the
value "Prompt" in the Gratuity tag which prompts the card holder to enter a gratuity amount on the Vx810 device.

EMV Debit Cashback on EMVSale Cash back prompting on the Vx810 is not supported.

Canadian EMV/Chip and PIN Receipt Requirements

 All PrintData from the Canadian DSIEMVClientX response must be included on every receipt.

 Two receipts will be printed whenever print data is returned.

 ‘Customer Copy’ and ‘Merchant Copy’ must be printed on separate receipts and in the language appropriate to the
card used in the transaction. Example receipts are available upon request.

 It is a Canadian Debit best practice to print ‘Transaction Receipt’ or ‘Releve De Transaction’ at the top of each receipt.

 Developers may optionally print both English and French receipt data bilingually:
1. Transaction Receipt – Releve De Transaction

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

86

2. Customer Copy – Copie Client (or alternatively, Copie du titulaire)
3. Merchant Copy – Copie Marchand

 Merchant Name, address and telephone must be printed as a part of the header of each receipt.

 If print data is returned, two copies must be printed; one for presentation to cardholder as a separate draft from the
usual receipt and one for the merchant.

 Any additional fields on the receipt must be translated into the language appropriate to the card: French for French
card transactions, English for English card transactions.

Canadian EMV/Chip and PIN Certification Process

1. As in the legacy Canadian certification requirements, the majority of the certification is focused on producing physical
printed receipt vouchers that contain all required print data and in the appropriate language of the card used for the
transaction. All required PrintData is passed back from the DSIEMVClientX. Developers may not alter or change the
content of the PrintData and are required to pass it in its entirety to the receipt voucher.

2. The certification script: "Point of Sale Certification Test Plan," (transaction script, 15 sections) is required for all
applications. If unfamiliar with the standard receipt requirements for Canada, it may be helpful to run through an initial
round of the first section of the Point of Sale Certification Test Plan and present these receipts to your developer
support representative for a "pre" review. If required for comparison, examples of receipts are available.

3. Developers are required to present a full set of completed receipts for review. Review may take multiple rounds if
variances are found and corrections required. Completed scripts will go through two Mercury developer support peer
review evaluations prior to final certification.

4. The required scripts must be completed in the exact manner outlined below:

 All receipts are to be organized in a single document with test cases clearly labeled and matching the test
cases outlined in the test plan

 organized in the same chronological order as presented in the test plans

 Please do not send jpegs or photos of your physical receipts; it is preferred to have your receipts scanned;
forward in PDF format or they may be faxed to 970-385-2738.

 If in the course of review, receipts are missing, variances are found or corrections required, this will be
communicated with the developer and required to be corrected. If requested to make corrections, please
replace the previous receipt with the corrected receipt and resubmit the entire package for final review.

 The goal of the certification test plan is to demonstrate receipt by receipt an adherence to the EMV
requirements. Mercury will submit the completed test plan to our Canadian EMV Sponsoring hosts only
when the plan is complete and correct to this standard.

5. Upon successful completion of the transaction/receipt review portion of the certification, the POS system will be

allowed to initiate one or two beta or pilot location(s). If required more than one beta merchant may be boarded up to
but not more than four locations. It is recommended for developers to work with your Mercury channel or sales
liaisons to establish suitable beta locations for a final monitoring of the POS system in a live production environment.
Merchants will need to process through one billing cycle before the Beta process is complete.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

87

Canadian EMV/Chip and PIN Production Requirements and Install Procedures

Important Preliminary Steps: Obtaining the DEPLOYMENT IDENTIFIER
1. All developers or the resellers of the developer's EMV solution will need to complete and submit an "Authorized

Reseller Application" before obtaining and installing a live production ready NETePay from Mercury. This application
may be filled out at the following link:
http://www.datacapsystems.com/auth-reseller-application/

2. Production ready Vx810 devices are ordered in advance directly from your Mercury sales liaison.
3. Production NETePay(s) are obtained and deployed in coordination with Mercury's technical support team. Upon

notification of the device ID(s) have been assigned for the Vx810 devices (MerchantIDs), Mercury support will complete
a deployment file on the DataCap Payment Systems Configuration Server (PSCS).

4. The PSCS will then forward by email a notification with the subject: "Epay Software Ready from Datacap System, Inc."
directly to the developer or reseller. Included in this email will be the deployment identifier which will be required as a
part of the production installation of NETePay 5.0.

5. NETePay servers are capable of multiple lanes of operation and can support multiple Vx810 device IDs. The standard
configuration for this architecture requires a primary server hosting the NETePay and communicating with each lane.
Alternatively, systems may be configured per lane and in this configuration will be distributed with one NETePay
Deployment ID per lane.

Production Deployment: Datacap SQL Instance, NETePay 5.0, and DSIEMVClientX
 Upon receipt of the above Deployment ID confirmation email, please proceed to download the appropriate Datacap SQL
instance and Mercury specific Mercury Payments(EMV), NetePay 5.0 for production at the following link:
http://datacapepay.com/netepay5.htm

http://www.datacapsystems.com/auth-reseller-application/
http://datacapepay.com/netepay5.htm

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

88

Scroll down through the page. There is also an embedded link to "Get" the User Guide (Install Guide) next to the Mercury
Payments (EMV) download link.

Mercury’s Tech Support via the DataCap Epay notification described above will provide you or your reseller with the
merchant’s necessary set-up documentation as well as the Merchants specific NETePay Deployment Identifier.

Follow the steps in the NETePay User guide for Mercury EMV. The steps will include obtaining a serial number and license
from the PSCS and locate the merchant parameter files completed my Mercury's support. The following is provided as an
abbreviated outline. Click the Load New Parameters to continue.

Continue following the prompts as outlined in the NETePay 5.0 User Guide. Click "I Have My Deployment ID" and enter into
the field available. Click OK to proceed.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

89

Click OK to the above prompt. This should return you to the Setup NETePay Parameters screen.

The main status window will appear indicating that the NETePay is now programmed and ready to process transactions:

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

90

IT IS IMPERATIVE TO PROCEED BY VERIFYING MERCHANT ACCOUNT INFORMATION AND BY THOROUGHLY TESTING THE
SYSTEM USING THE ASSIGNED PINPAD EQUIPMENT!

Important!
NETePay relies on numerous services provided by Windows and other Microsoft software such as MSDE or SQLExpress
2005. Proper computer operation is imperative to ensure reliable NETePay operation and prevent possible loss and/or
corruption of transaction data.

The following operational guidelines must be observed to ensure reliable NETePay operation:

• Always quit NETePay from the File|Exit pull down menu before restarting or shutting down Windows.
• Always quit NETePay and then shut down Windows before turning off the computer power. Never turn off the
computer power without first quitting NETePay and shutting down Windows.
• Always quit NETePay and shut down Windows before pressing the reset button on the computer.
• If the computer is subject to unplanned power losses, the use of an UPS (Uninterruptible Power Supply) is highly
recommended.
• If you operate a backup copy of NETePay, you must procure unique terminal and/or merchant account
information for each copy of NETePay from your processing provider. Operation of multiple copies of NETePay
with identical merchant setup information may cause transactions to be lost or duplicated at your processing
provider.

Download the DSIEMVClientX for production here: http://datacapepay.com/dsiemvclient.htm

Download the DSIClientX if the merchant location is also supporting MercuryGift:
http://www.datacapepay.com/dsiclient.htm

You should always install in this order: Datacap SQL Instance, NetePay 5.0, DSIEMVClientX, and DSIClientX (only if
supporting gift). Always make sure to reboot after each component is installed and as you are prompted to do so.

http://datacapepay.com/dsiemvclient.htm
http://www.datacapepay.com/dsiclient.htm

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

91

Additional MercuryPay Processing Features

Mercury Stand-In Authorizations
Mercury maintains a “stand-in” capability which offers uninterrupted processing if Mercury’s back-end processor experiences
an outage. During such a period, Mercury issues approval codes of MERCXX instead of normal authorization codes supplied by
the issuers. Once the outage has passed, Mercury re-runs the transactions into each affected merchant’s batch. Mercury
assumes financial liability associated with transactions that are approved as MERCXX transactions. This means Mercury will pay
merchants for transactions that decline if they were approved during stand-in.

Integration Best Practices: As a developer, this process is usually transparent, with one exception: If the POS utilizes the
batch method of batch closing (sending no PreAuthCaptures until the end of day, with tip adjustments stored locally until
the end of day) then the MERCXX transactions will not capture as part of the POS batch close.

Only the non-MERCXX transactions will successfully capture upon batch close. During local vs host batch total comparison, it is
important to only calculate non-MERCXX local transaction totals against the host totals received from the BatchSummary
request. This will allow the batch to close successfully. Once the POS batch closes, Mercury then runs the MERCXX captures,
including tips, into a separate batch for the merchant.

Mercury’s Duplicate Logic
For standard U.S. ActiveX/DSI and Web Services developers, avoiding duplicate transactions requires implementing an always
incrementing invoice logic.

Element Length Remarks

InvoiceNo 1-16 in length BUT right 10 must be unique. No alpha characters, special characters or dashes.

The exception is in the event of a time out response where the authorization response is unknown. In this case, the POS
should resubmit the exact transaction request with the same amount, card number, and invoice number. If the transaction
was not previously authorized, the response data will include the standard approved or declined processor's response. If the
transaction was previously authorized, the response data will include APPROVED with the additional TextResponse designation
of AP* (reported as Approved/AP DUPE). The second transaction will not be charged.

Mercury duplicate logic screens for unintended duplicates within the current open merchant batch. This logic incorporates the
following variables to determine an unintended duplicate:

 Card number
 Amount
 Transaction Type (TranCode)
 InvoiceNo

When Mercury' duplicate checking recognizes same card number, same amount, same transaction type and same InvoiceNo
(note exact right 10 per specifications above) within the same open batch, the duplicate checking assumes that the second
transaction is an unintended duplicate. The original authorization holds and the card is not charged twice. Mercury responds
by replacing the duplicated request with the original transaction information—AuthCode, AcqRefData, ProcessData, RefNo,
CVV and AVS Result data are all passed from the original response. Mercury passes the approval on to the second duplicate
transaction without charging the card a second time.

Integration Best Practices: Always send an incrementing InvoiceNo number with each transaction request except to
handle transaction timeouts. When a POS receives a timeout, resend the exact transaction request.

Important Duplicate Checking Specifications

 InvoiceNo specification: Numeric only, incrementing 1-16 in length BUT right 10 must be unique. Right 10 are used

for duplicate logic checking. No alpha characters, special characters or dashes.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

92

 Duplicate logic will fail if the POS never sends an invoice number or always sends the same invoice such as
“NOINVOICENO” or “0000.”

 If it is required to charge the same card again for the same amount, the POS must submit a second transaction with a
new, unique invoice number.

 The Duplicate Override node is not required for U.S. processing. Duplicate Override is used in Canadian processing as
the duplicate logic only checks card number and amount in any current batch.

 Duplicate logic is supported on Credit, Debit, EBT and FSA transactions where Batch and RefNo are returned in the
response. Duplicate checking is unsupported in PreAuth transaction requests.

Handling Transaction Time-Outs
On rare occasions and due primarily to connectivity related issues, transaction requests can timeout while waiting for a
response or timeout en route. Error responses will be returned depending on where in the transaction cycle the
communication failed:

1. "Timeout on Response" is returned if Mercury did not get a response from the processing back end networks
2. "Timeout waiting for server Response" is returned if the merchant’s POS did not get a response from Mercury

When these connectivity errors are returned it is important to handle these effectively in order to avoid potential duplicates.
In these cases, the merchant is unsure whether the transaction was actually approved by the processor. If Mercury has
authorized the transaction and the response fails to reach the POS, it is important to rerun the exact transaction without
incrementing the InvoiceNo. APPROVED/AP* indicates Mercury had the original request logged and the card will not be
charged twice. A standard processor APPROVED or DECLINED response indicates that the original request was not logged.

Integration Best Practices: Upon receiving timeout errors, the POS or POS operator always should retry the transaction
using the exact same invoice number, card number, and amount.

Contactless Payments
Using RFID embedded Chip cards and Mobile Wallets
Credit cards enabled for contactless payments contain both a regular magnetic stripe, as well as a Radio Frequency
Identification (RFID) chip. Mobile wallets enabled for contactless payments use a Near Field Communication (NFC)
technology and work with a supporting peripheral device and a mobile carrier network that facilitates the exchange of data
to the POS.

RFID and NFC are based on communication protocols and data exchange formats established with the ISO/IEC
format14443. NFC builds upon RFID systems by allowing two-way communication between endpoints, where earlier
systems such as contactless smart cards were one-way only. Since unpowered NFC "tags" can also be read by NFC devices,
it is also capable of replacing earlier one-way applications.

Note that the card brands have their own contactless programs:

 MasterCard PayPass

 Visa Contactless

 American Express ExpressPay

If a merchant accepts contactless payments using a RFID/NFC enabled peripheral, the card, fob or wallet is “tapped” on the
reader instead of swiped. The RFID chip card contains track data in the same form as a magnetic swipe yields. However,
the discretionary data of the track changes with each tap as a security feature. The card issuing bank tracks the iterations
of the discretionary data and compares it to that submitted on each contactless transaction. For mobile wallets, the
customer registers with their issuer and imports the cards to their wallet. Special NFC contactless readers are then used on
the peripheral device which then communicates with the wallet network to securely obtain card data. RFID/NFC contactless
devices are available from most major device manufacturers including Ingenico, Equinox, VivOTech and VeriFone. The
example below is typical for companies such as ISIS Mobil http://www.paywithisis.com/ (partnered with AT&T, VeriZon and
T-Mobile and supported my all major card brands).

http://www.paywithisis.com/

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

93

Confirmation of Contactless Capable and Transaction XML requirements
Developers certify their system’s POS entry capability for supporting contactless transactions, regardless of whether all
transactions are contactless, magnetically swiped or manually entered. Systems which support contactless payments must
be flagged as “Contactless Capable” in Mercury’s back end network configurations. Similarly, as new merchants are
boarded, the merchant’s primary MerchantID record is flagged as being capable of accepting contactless payments. These
POS contactless capability flags do not impact non-contactless swiped or key-entered transactions, but must be in place
when the source of the card data entry is via a contactless device. If a system attempts to send contactless transactions
through a MerchantID which does not have the Contactless Capable flag enabled, an error of “INVALID DATA” will be
returned in the TextResponse sent to the POS.

 <AccountSource>Contactless</AccountSource>
In order to support contactless payments, whether it is directly from a RFID chip card or Mobile wallet, the POS developer
utilizes an additional Account level data element in the XML request: <AccountSource>Contactless</AccountSource>. This
tag and value are submitted only for transactions which are contactless. If a transaction is magnetically swiped or manually
entered, the XML will not change from what is presently used.

XML Example: Contactless non-encrypted Credit Sale transaction request

<?xml version="1.0"?>
<TStream>

<Transaction>
 <MerchantID>595901</MerchantID>
 <OperatorID>test</OperatorID>
 <TranType>Credit</TranType>

<PartialAuth>Allow</PartialAuth>
 <TranCode>Sale</TranCode>
 <InvoiceNo>123</InvoiceNo>
 <Memo>Example POS 1.18</Memo>
 <RefNo>123</RefNo>
 <Account>

 <AccountSource>Contactless</AccountSource>
 <Track2>5499990123456781=0908101543219871234</Track2>

 <Name>TEST MPS</Name>
</Account>

 <Amount>
 <Purchase>1.14</Purchase>
 </Amount>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

94

</Transaction>
</TStream>

XML Example: Contactless, encrypted Credit Sale transaction with a token requested
Note the Account level elements are typical of any encrypted transaction request, but here with the addition of
‘Contactless’ in the AccountSource.

<?xml version="1.0"?>
<TStream>
 <Transaction>
 <MerchantID>395347308=E2ETKN</MerchantID>
 <TranType>Credit</TranType>
 <TranCode>Sale</TranCode>
 <InvoiceNo>10</InvoiceNo>
 <RefNo>10</RefNo>
 <Memo>MPS Example XML v1.0</Memo>

<Frequency>OneTime</Frequency>
<RecordNo>RecordNumberRequested</RecordNo>

 <PartialAuth>Allow</PartialAuth>
 <Account>
 <EncryptedFormat>MagneSafe</EncryptedFormat>

<AccountSource>Contactless</AccountSource>
<EncryptedBlock>F40DDBA1F645CC8DB85A6459D45AFF8002C244A0F74402B479ABC99

15EC9567C81BE99CE4483AF3D</EncryptedBlock>
<EncryptedKey>9012090B01C4F200002B</EncryptedKey>
<Name>MPS TEST</Name>

</Account>
 <Amount>
 <Purchase>1.05</Purchase>
 </Amount>
 </Transaction>
</TStream>

Downgrades, Swiped vs. Manual

Downgrades are Interchange higher rates that can be incurred on transactions. Reasons vary. Some downgrades result from
circumstances that can be avoided by POS programming and/or proper action on the part of the merchant.

Ensure that all required fields, with correct data, are sent in the XML transaction request as specified. Several transaction
types, such as PreAuthCapture/Adjust, require that data from the PreAuth/Sale response be sent to the host with the
corresponding transaction. For example, the response to an approved PreAuth request includes AuthCode and AcqRefData
fields, which must be sent to the host in the PreAuthCapture transaction. The same authorize amount sent in the original
PreAuth must also be sent to the host in the PreAuthCapture in order to not have the transaction downgrade.

Integration Best Practices: If a merchant is unable to swipe a card through a card reader, hand-key the account number
and expiration date. Sometimes this is unavoidable, due to a bad magnetic stripe on the card itself. A higher rate is applied
to the manual transaction because it falls into a card not present category for processing. Always include Card Security
code and AVS to qualify the transaction for the best possible rate and always obtain a signature.

Swiped Transactions Sent as Manual
It is important to ensure the Track1 or Track2 data (but never both) is sent correctly when a card is, in fact, swiped locally.

Integration Best Practices: If the POS receives incomplete swipe data from the card reader, it should not extract the
account number and expiration date and send a manual transaction without sending a prompt to inform the merchant.

Integration Best Practices: If a manual transaction is unavoidable, the POS should prompt the merchant to enter AVS
(Address Verification Service) and CVV2/CID data. A good AVS match on a manual transaction may result in a lower rate

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

95

for the merchant (except for restaurants). Discover surcharges the merchants $0.50 for each manual transaction
submitted without CVV2/CID data. Please refer to the card-not-present section of this guide for details on supporting
manual transactions.

Level II Data: Tax and CustomerCode for Corporate card support
For the lowest rates when processing business/commercial (corporate) cards, it is necessary to supply Tax (as a sub field in the
Amount element) and CustomerCode (in the TranInfo Element) fields with all credit transactions. The use of this data lowers
rates for retail and supermarket merchants, but not restaurants.

Submit <Tax>0.00</Tax> tag in the <Amount> section of the XML request. Since the POS already calculates the correct tax
amount for each transaction, simply parse the actual tax amount from the POS into the Tax tag. The Purchase amount tag will
be the total charge, including tax. The tax field breaks out the tax amount for Level II reporting purposes only.

Submit <CustomerCode>12345</CustomerCode>in the <TranInfo> section –The actual PO number, the merchant’s zip code,
or the transaction invoice number, will sufficient to meet the Level II reporting requirements.

Utilizing Card Security Codes and Address Verification data in Card-Not-Present Transactions
Card Verification Data
CVV2/CVC2 (Cardholder Verification Value)/CID (Amex and Discover)
CVV2 is a three- or four-digit code found only on the back of a card, that is used in MOTO (Mail Order/ Telephone Order) and
ecommerce transactions to determine that the card is physically with the customer who is placing the order (since the code
can only be found on the card itself). If the CVV is sent in with the transaction, the following result codes will be returned in the
CVV Result tag.

Card Verification Result Codes
The CVV2/CVC2 Result is a code that reflects the outcome of the CVV2/CVC2 check.

M CVV2/CVC2 Match

N CVV2/CVC2 No Match

P Not Processed

S CVV2/CVC2 should be on the card, merchant has indicated that CVV2/CVC2 is not present.

U Issuer is not certified for CVV2/CVC2 processing

At the time of this writing, CVV is not a factor in lowering Visa/MC costs, but Discover surcharges the merchant $0.50 for each
manual transaction submitted without CVV2/CID data.

Integration Best Practices: For some transactions a non-matching CVV may cause the transaction to be declined with
either a “DECLINE” message or “DECLINE-CV2 FAIL.” Developers should make some provision to advise the merchant of a
bad CVV match so that the merchant can opt to void the transaction since the transaction is more likely to be a
chargeback risk.

Address Verification Service (AVS)
Cards that are swiped incur the lowest processing rates. Mail, telephone and E-Commerce orders without cards present incur
higher rates as they are considered higher risk.

1. Though not impacting the actual authorization approval, a better processing rate is achieved for some (retail, QSR,)

merchants if address information is supplied when the card is not swiped. This is referred to as Address Verification
Service (AVS).

2. Minimum AVS requirements include five numeric digit ZIP code. Additionally the numeric values of the credit card billing
address may be used. The nine digit zip is also acceptable, no spaces or hyphens allowed.

3. The AVS response will return a single alpha value indicating the quality of the match that was obtained.
4. Example:

 <AVS>
 <Address>4Corporate Square</Address>

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

96

 <Zip>30329</Zip>
 </AVS>

Integration Best Practice: AVS matching is only done on the numeric value of Address and Zip fields. Always send the zip
and then, optionally, address. Never just send the address or send an address that starts with alpha values as “PO Box.”
Note: Max for the Address field is AN 20 characters. Although the match response has no effect on the transaction
approval, developers should make some provision to advise the merchant of a bad AVS match so the merchant can opt to
void the transaction. The transaction is more likely to be a chargeback risk for the merchant without a match.

Additional Notes on AVS:

 Not submitting AVS on keyed transactions affects processing cost in all merchant categories (SIC codes).
 It is recommended to leave it up to the merchant to decide if non-matches should be accepted or reversed.
 For better rates with Visa and MC on keyed transactions, submit AVS, with at least the zip code.
 For better rates with Discover on keyed transactions, submit AVS with street address and zip code.
 For Amex, submit AVS with street address and zip code.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

97

Card Data Security: Laws, Industry Rules and Regulations

PCI: Payment Card Industry
PCI is commonly, but incorrectly used as a generic term for ALL security rules, even those formed outside of PCI. During the
course of this paper, the term PCI will only be used in reference to things that fall under the scope of the PCI Security
Standards Council.

The payment processing industry has banded together in the common interest of making life difficult for criminals. The group
they formed is known as the PCI Security Standards Council (PCI SSC). Under this council, standards have been formed that
help ensure that payment processing is secure, thereby protecting cardholder data. It’s important to note that while these
standards are maintained by the PCI SSC, it’s up to each card brand such as Visa or MasterCard to enforce their use. Card
brands require complete PCI compliance among everybody that stores, processes, or transmits cardholder data. Failure to
comply can result in fines, especially in the event that card data is compromised or stolen.

As mentioned previously, there are rules formed outside of the PCI Security Standards Council. Some of these additional rules
have been made by individual card brands such as Visa. On top of that, there are federal and state laws in the US. Canada has
its own laws to throw into the mix. Some have been or are in the process of being adopted by PCI. These rules will often adopt
the same name or a similar name. The rules that haven’t been adopted by PCI are still important. In fact, some of them are
actively enforced by card brands such as Visa. Of course, government laws also need to be obeyed.

Card Data Security Standards, Rules and Regulations: PCI Council Governed

PCI DSS (Payment Card Industry Data Security Standard)
This is the main document that lays out all the rules and regulations. Consider it the master document for PCI data security.
The PCI DSS is periodically updated and with each revision, gets a new version number (i.e. PCI-DSS v 1.1). Everybody involved
in the handling of card data is subject to these rules.

Note: Originally, it was created by Visa and then later adopted by PCI.

PCI PED (Payment Card Industry PIN Entry Device)
This standard complements the PCI-DSS. It outlines the rules and regulations governing the approval of security for PIN Entry
Devices (PED). It’s designed for PIN Pad manufacturing, setup, and use. It can be considered complementary to the PCI-DSS. By
following this document, those companies and entities that focus primarily on PEDs can more easily and effectively validate
the security of their products. Some card brands such as Visa require the use of PED approved devices. However, there’s a
matrix of PED certification versions and corresponding dates governing their deployment and use. The PCI PED is periodically
updated and with each revision, gets a new version number (i.e. PCI PED v 1).

PA-DSS (Payment Application Data Security Standard)
This document outlines the rules and regulations governing the approval of security for payment application software such as
point-of-sale (POS) systems. By following this document, those companies and entities that focus primarily on writing payment
application software can more easily and effectively validate the security of their products. PA-DSS validation can be obtained
through a PA-QSA.

Note: Originally, it was created by Visa as the “PABP.” Later, it was adopted by PCI and named “PA-DSS” and released
on April 15, 2008.

Card Data Security Standards, Rules, and Regulations: Visa Governed

CISP (Cardholder Information Security Program)
CISP is Visa’s security program. The PABP, DSS, and Visa PED all fall under the CISP.
PABP (Payment Application Best Practices)
This is an older document, outlining the rules and regulations governing the approval of security for payment application
software such as POS systems. By following this document, those companies and entities that focus primarily on writing
payment application software can more easily and effectively evaluate the security of their products. PABP validation can be

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

98

obtained through a Visa-approved security auditor. A list of PABP approved payment applications is available on Visa’s
website.

Note: The PCI PA-DSS should be referenced in place of Visa’s PABP. The PA-DSS was released April 15, 2008.
DSS (Data Security Standard). Visa’s DSS is an older document, created as a master document in data security. It’s
been adopted and refined by the PCI. The PCI DSS should be referenced in place of Visa’s DSS.

Visa PED (PIN Entry Device)
Visa’s PED is an older standard, outlining the rules and regulations governing the approval of security for PIN Entry Devices
(PED). It’s been adopted and refined by PCI. It’s important to note that currently, Visa PED approved devices are not allowed to
be sold, but can be used by merchants that already have them.

US Federal Laws
The Fair and Accurate Credit Transaction Act of 2003 (FACTA)
This law dictates, among other things, that “no person that accepts credit cards or debit cards for the transaction of business
shall print more than the last five digits of the card number or the expiration date upon any receipt provided to the cardholder
at the point of the sale or transaction.” While the intent of this law is to mask card data printed on the customer copy, there
have been cases of merchants being sued when the customer has walked away with the merchant copy.

Note: More information is presented later in this paper in the section, “Printing, Storing and Displaying Card Data.”
Currently, there is no federal law dictating requirements on the storage of card data.

US State Laws
Tennessee - Tennessee Consumer Protection Act
As of January 2007, “no person that accepts credit cards or debit cards for the transaction of business shall print or cause to be
printed more than five (5) digits of the card number or the expiration date upon either the receipt retained by the merchant or
the receipt provided to the cardholder at the point of the sale or transaction.”

Note: This law is more restrictive than the federal law and should be blended with PCI requirements. More information
is presented later in this paper, in the section, “Printing, Storing and Displaying Card Data.”

California – Song-Beverly Credit Card Act of 1971, section 1747.09
As of January 2009, this California law follows the same limitations as that of Tennessee’s law.

Note: This law is more restrictive than the federal law and should be blended with PCI requirements. More information
is presented later in this paper, in the section, “Printing, Storing and Displaying Card Data.”

Canadian Laws
Federal - Personal Information Protection and Electronic Documents Act (PIPEDA)
Alberta - Personal Information Protection Act
British Columbia - Personal Information Protection Act
Quebec - An Act Respecting the Protection of Personal Information in the Private Sector

There aren’t any Canadian laws that specifically cover the printing of card data. However, it does fall under the privacy laws. In
summary, legally you’re not in trouble with the law if you print card numbers on the customer copy. However, if you have the
card number on your copy as the merchant, you’re supposed to have “rigorous procedures in place to protect credit card
receipts that contain all the information needed to misuse a credit card ─ name, credit card number and expiry date.”

Note: More information is presented later in this paper, in the section, “Printing, Storing and Displaying Card Data.”

Visa Payment Application Security Mandates
Visa has released a list of mandates that started going into effect January of 2008, affecting the security requirements of
payment applications such as POS systems. These mandates are phased over two and a half years, making PABP or PA-DSS

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

99

compliance a requirement to process Visa cards. Below is a table taken from their announcement, “Visa Announces New
Payment Application Security Mandates.”

Phase Compliance Mandates Effective Date

I. Newly boarded merchants must not use known vulnerable
payment applications, and VisaNet Processors (VNPs) and
agents must not certify new payment applications to their
platforms that are known vulnerable payment applications

1/1/08

II. VNPs and agents must only certify new payment applications
to their platforms that are PABP-compliant

7/1/08

III. Newly boarded Level 3 and 4 merchants must be PCI DSS
compliant or use PABP-compliant applications

10/1/08

IV. VNPs and agents must decertify all vulnerable payment
applications

10/1/09

V. Acquirers must ensure their merchants, VNPs and agents use
only PABP-compliant applications

7/1/10

Phase I only affects known vulnerable payment applications. Visa periodically distributes a list to partners such as Mercury. The
latest document, dated January 30th, 2008 is titled, “Visa Alerts Acquirers About Payment Applications That Store Sensitive
Cardholder Data.” Phases II through V use the term “PABP-compliant,” meaning that PABP or PA-DSS guidelines are followed
by the payment application. PABP or PA-DSS validation is not required by Visa, but may be required by some merchant
acquiring banks and their processors. At this time, Mercury requires compliance and encourages developers to become
validated by an experienced Qualified Security Assessor to help ensure that their applications are safe.

PED Security Compliance and Dates
Devices sold prior to 2004 are “Non-Approved,” meaning there was minimal testing and certification performed. They must be
removed from service by the “sunset date” of July 10, 2010. Devices sold as of 2004 were considered “Visa PED Approved.”
Visa PED Approved devices cannot be sold after Dec 31, 2007. However there is currently no sunset date requiring removal
from service. Devices sold as of January 1, 2008 must be “PCI PED Approved.” PCI adopted the Visa PED requirements,
enhanced, and formalized it as PCI PED v1. PCI PED v2 can optionally be used as of April 1, 2007. PCI PED v2 must be used as of
April 1, 2008.

PCI Approvals for PCI evaluated devices will expire six years past the effective date of a subsequent update of security
requirements. This means that when PCI PED v2 goes into effect, PCI PED v1 Approved devices will have to recertify before
expiration in 2014. There is currently no sunset date requiring removal of expired devices from service.

A link to the list of approved devices can be found at the end of this article.

PCI PED Version 2
PCI PED Version 2 goes into effect April 1, 2008. The following comes from Visa’s website since all the information has yet to be
moved to the PCI website.

 Version 2 of the Payment Card Industry (PCI) POS PIN Entry Device Security Requirements and version 2 of the

Payment Card Industry (PCI) Encrypting PIN Pad Security Requirements shall be published during April 2007. This
supersedes the previously announced date of 1 October 2006.

 Version 2 of the Payment Card Industry (PCI) POS PIN Entry Device Security Requirements and version 2 of the
Payment Card Industry (PCI) Encrypting PIN Pad Security Requirements shall become effective and mandatory to use
for new evaluations beginning 1 April 2008. From 1 April 2007 through 31 March 2008, either version 2 or the current
requirements may be used for new evaluations.

 Requirements A2 and A3 in the Payment Card Industry (PCI) POS PIN Entry Device Security Requirements, and
requirement A2 in the Payment Card Industry (PCI) Encrypting PIN Pad Security Requirements shall remain available
as test options until the current security requirements expire 31 March 2008.

PCI PED Expiration

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

100

The following comes from Visa’s website since all the information has yet to be moved to the PCI website.

 Approvals for PCI evaluated devices will expire six years past the effective date of a subsequent update of security

requirements.
 It is important to note that a sunset date for deployed devices that were approved at the time of deployment, but

have had their approvals expire (such as Pre-PCI approved devices) does not currently exist. Due to the changing
threat environment, PCI participants are evaluating the need to establish a sunset date for Pre-PCI devices. However,
that sunset date, if established, will take into account the expected normal life cycle of devices subsequent to their
deployment, balanced against the emergence of threats. Unless a sunset date is established, deployed devices who
have their approval expire 31 December 2007 may continue to be used after that date subject to the restrictions
stated in the preceding paragraph. The impact of the expiration is strictly associated with new
purchases/deployments which must conform to PCI requirements, and not existing deployments.

Printing, Storing and Displaying Card Data
Storage and Display

Integration Best Practices: The following items should never be stored: Full track data from any track, PIN/PIN Block,
Security code printed on back of card (CVV2, CVC2, CID)

Integration Best Practices:
 Unencrypted storage of the account number is limited to the first six and last four digits of the card number.

Everything in between must be masked.
 Whenever a card number is displayed, it must be masked in the same fashion unless there is a specific need to see

the full card number.
 If a card number is stored unmasked, it must be encrypted in accordance with the PCI-DSS. The PABP can be

referenced as it’s targeted at developers of POS systems.
 When encrypting, the following advice from the PCI website is important for PABP-compliancy: Approved standards

are standardized algorithms (like in ISO and ANSI) and well-known commercially available standards (like Blowfish)
that meet the intent of strong cryptography. Examples of approved standards are AES (128 bits and higher), TDES
(two or three independent keys), RSA (1024 bits) and ElGamal (1024 bits)

 If the account number is stored, the cardholder name, expiration date, and service code must also be encrypted.
Otherwise, those data elements aren’t required to be encrypted. However, Mercury recommends encrypting these
data elements regardless in an effort to protect consumer privacy.

 Sensitive, encrypted card data can only be stored as long as there’s a business reason. For most systems, it’s best to
delete the stored data after a successful batch closure.

Cardholder Receipt

An example receipt can be seen in Visa’s Card Acceptance Guide, page 68. This guide can be downloaded from Visa’s
merchant site.

Integration Best Practices:
Print only the last four digits. ACT # : ************5220
Print the expiration date masked. EXP : XX/XX

Merchant Receipt

Integration Best Practices: To protect consumers and to be safe from lawsuits, we recommend masking the card
number and expiration date on the merchant receipt in the same way as the cardholder receipt. Alternatively, have a
configurable option in POS software and terminals to allow the dealer setting it up to choose if the card number and
expiration date is masked on the merchant copy. Make this option’s default to mask card data on the merchant copy.

FACTA was written with the intent of masking card data on the physical customer's receipt copy. There have been well
documented incidents of legal action that occurred as a result of this FACTA violation. We anticipate that more state laws,
federal law, and card brand rules will follow. In anticipation of additional legislation governing physical receipt
requirements, Mercury recommends masking the merchant copy to avoid complications.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

101

PCI-PA-DSS Summary by Merchant Category

Use of Track1 and Track2 Data
Track data is for immediate use in building authorization requests only, and under no circumstances may either Track1 or
Track2 data is stored for any length of time subsequent to authorization. Track2 is not required when capturing or adjusting a
transaction. If Track2 data is submitted for the PreAuth or Sale transaction, the corresponding PreAuthCapture or Adjust
transaction will be fully qualified provided the full card number, expiration date, authorization code, and in the case of
PreAuthCaptures, the acquirer reference data (AcqRefData) returned on the PreAuth response, are submitted.

Cardholder Verification Value
Cardholder Verification Value codes (e.g. CVV2, CVC2, CID) are the three-digit or four-digit numbers printed on the signature
line on the back of a card. These are used for security purposes in transactions when a card cannot be swiped due to a
damaged magnetic stripe, or when the card is not physically present (e.g. E-Commerce). As in the case of track data, CVV is for
immediate use in an authorization, and must not be stored for any length of time.

PIN Data
PIN Verification Values (PVV), PIN Blocks, and derived encryption keys must not be stored for any length of time subsequent to
authorization whether encrypted or not.

Cardholder Data Storage and Retention
Cardholder data is defined as any personally identifiable data associated with a cardholder. It includes account numbers,
expiration dates, addresses, names, social security numbers, etc. When cardholder data is stored by the merchant for any
length of time, proper security measures must be taken. If full card numbers are stored, they must be encrypted using a strong
encryption method (at least 128-bit TDES, 256-bit AES, etc.). At a minimum, the account number must be encrypted, but it is
advisable that all cardholder data be encrypted.

For the purposes of performing tip adjustments, restaurants maintain full card numbers until the batch is closed, and so strong
encryption management is required for such POS systems. The best course of action is to store as little cardholder data for as
short a time as possible. Truncating or deleting card numbers as soon as the batch closes is the best policy. Log files must not
contain credit card numbers (they should be truncated if they appear in log files).

Retail / QSR
Retail/QSR merchants who process Sale transactions may find it useful to store encrypted card data until the batch is closed.
Since Voids and Adjusts can only be performed while the batch is open, there is no need to retain card data after the batch is
closed.

Restaurant
In order to perform PreAuthCapture, Adjust and Void, table service restaurants will need to store full card numbers, expiration
dates, and other transaction info until the batch is closed. At the least, the card numbers must be encrypted using a strong
encryption method during this time. Since Adjust and Void transactions can only be performed while the batch is open, the
card numbers should be truncated or discarded entirely after the batch is closed.

When displayed unencrypted, the card numbers must be truncated, or masked, to show no more than the first six and last four
digits. This does not apply to employees who need to see full numbers, so the option to view card numbers both unencrypted
and unmasked can be a managerial feature. However, it is prudent not to allow easy bulk exports or bulk printing of
unencrypted card numbers.

The perpetual storage of card data, even in encrypted form, puts the merchant at risk. According to the card associations, card
data can only be stored as long as there is a “legitimate business need.” Mercury recommends that encrypted card data be
deleted immediately upon batch close. However, merchants who employ electronic signature capture and who do not have
paper receipts may retain the electronic receipt records for two years. This is because merchants are required for legal reasons
to securely store receipts (whether paper copy, or digital image including signature) for two years.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

102

As an alternative to encrypted storage of cardholder data, the card numbers can be truncated at the beginning of storage: no
more than the first six and last four digits may be stored unencrypted.

Card Data Security Related Links
PCI Security Standards Council (PCI SSC) https://www.pcisecuritystandards.org/

PCI SSC Document Library https://www.pcisecuritystandards.org/security_standards/documents.php
Includes access to:

 PCI DSS (Payment Card Industry Data Security Standard) v.2

 PA DSS (Payment Application Data Security Standard) v.2

 PCI PTS (PIN Transaction Security)

 PCI DSS Supporting Documentation

 PCI DSS Self-Assessment Questionnaires (SAQ)

Visa Payment Application Security Mandates
http://usa.visa.com/merchants/risk_management/cisp.html?ep=v_sym_cisp

Visa Merchants

http://usa.visa.com/merchants/

The Fair and Accurate Credit Transaction Act of 2003 (FACTA)

http://www.ftc.gov/os/statutes/fcrajump.shtm

https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/security_standards/documents.php
http://usa.visa.com/merchants/risk_management/cisp.html?ep=v_sym_cisp
http://usa.visa.com/merchants/
http://www.ftc.gov/os/statutes/fcrajump.shtm

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

103

Appendix: Additional Support Resources

Appendix 1: Magnetic Track Data and Card Reader Configuration

Magnetic Stripe Track Data
Track data is the information encoded on the magnetic stripe on the back of payment cards. This track data follows ISO
standards for financial cards but may vary between Credit, Debit, EBT and Gift encoding. Three tracks are possible, but only
Track1 and Track2 currently have standardized use. Track3 is most widely used by co-branded financial cards for membership
numbers. It is required to parse out the track before sending the transaction to Mercury. Most standard MSR manufacturers
allow for tracks to be enabled or disabled at the read head meeting the needs of the POS or processor. Developers have the
option of submitting either Track1 or Track2 although it is recommended to always use Track2 as the default read and never
both. If using the Magtek end-to-end encryption peripherals, encryption data can only be sent to Mercury in the Track2
format.

Magnetic Stripe Reader (MSR) Configuration
It is important to follow the manufacturer’s instructions for how to properly configure the magnetic stripe reader (MSR).
Different card readers possess different behaviors, and this should be taken into account when the POS parses track data.
Carriage returns may be present after Track1 and/or Track2; certain models of card readers have the ability to send only
Track1 or Track2; some readers remove the sentinel characters before passing the data to the POS software, etc.

Integration Best Practices: Track data contains the expiration date in the YYMM format. The transaction response from
the processor returns the expiration date in the MMYY format. Whenever card data is keyed manually or whenever the
ExpDate is re-submitted for a PreAuthCapture, Void or Adjust, it must be submitted in the MMYY format.

Integration Best Practices: Important PCI PA-DSS security considerations surround the use of track data. It must never be
stored subsequent to authorization. The approved transaction response sends back separate fields for account number
and expiration date; these may be stored using PCI PA-DSS standards for strong encryption as long as there is a “business
need.”

In order to qualify a transaction request as "card present," a full Track1 or Track2 read must be included in the XML
authorization request sent to Mercury. The presence of track data in a transaction request qualifies the card was swiped and
physically present for the transaction. Fully qualified swiped transactions carry the least risk, and consequently a lower
processing rate than manually entered transactions.

Standard ISO Financial Track Data
Standard track data can be identified by a format code (normally 'B'), sentinel characters (%, ^, ?, ;), also called track delimiters,
at the beginning and end of each track.

%B5499990123456781^TEST/MPS^13051010000000000?;5499990123456781=13051015432198712345?
The % (start) and ? (end) characters delimit Track1. The ; (start) and ? (end) characters delimit Track2.

Integration Best Practices: For standard credit, developers may chose to place either Track1 or Track 2 data (do not
include both) in the request XML string, but it is recommended to default to Track2. Track2 is also the only established
standard for Debit and EBT processing. PrePaid/Gift cards also tend to have only Track2 or modified Track2 formats.
Many states produce EBT formatting that does not follow the ISO financial formats. NOTE: When placing track data in the
XML request string, do not include start or end sentinels.

Track 1 Details
In addition to account number data, cardholder names can be extracted from Track1 data and submitted. This is not required
for processing. If used, this string will appear on the merchants’ MercuryView™ online reporting. The customer name can also
be used locally, to print on receipts.

Track1: %B5499990123456781^TEST/MPS^13051010000000000?

 The account number is between the B and the first ^
 The cardholder name is between the two ^ characters with the last name first

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

104

 The expiration date is the first four digits after the second ^ in YYMM format

Note on corporate or jointly-held cards: Some corporate or jointly-held cards have cardholder names containing the
ampersand (&) character. However, ‘&’ is the character used to begin escape sequences in XML, and must therefore be
escaped itself or the DSIClientX will generate a parse error. Logic should be included to replace any occurrences of ‘&’ in a
cardholder name, with the escape sequence '&' to prevent this.

Note on Track Format code ‘B’: Used as part of the ISO 7813 standard format for all financial bank cards, certain State issued
Electronic Benefit Transfer cards are in circulation without this formatting code ‘B.’ Some peripheral devices use this
formatting code ‘B’ as an initial validation check before allowing the card’s PAN to be used with PIN Debit or PIN based EBT
transactions. Be sure to check with the device manufacturer to confirm there is a way to bypass this in their API.

Track 2 Details

;5499990123456781=13051015432198712345?

 The account number is between the ; and =
 The expiration date is the first 4 digits after the = in YYMM format

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

105

Appendix 2: Transactions Supported on the Mercury Platform

TranType TranCode Swipe Manual

Credit Sale

x x

 Return x x

PreAuth

x x

PreAuthCapture

x x

 VoidSale x x

 VoidReturn x x

 VoiceAuth x x

 Adjust x x

Reversal (VoidSale + AcqRefData +ProcessData) uses PartialAuth=Allow set on original request x x

Tokenization Initial request for Credit Sale and PreAuth TranCodes requesting Token Record and Frequency x x

All “ByRecordNo” requests for all Credit TranCodes (See below)

x

US PIN Debit Sale (Allows Cash Back) x
 Return

x

 Canadian Debit Sale x
 Return x
 KeyChange x
 Sale with Gratuity x
 Canadian EMV Credit and Debit supported—See section on EMV for full details x x

FSA FSASale x x

ReverseFSASale x x

 EBT Foodstamp Sale x x

Foodstamp Return x x

 Foodstamp – Balance x x

 Cash Sale (Allows Cash Back)

x x

 Cash Balance x x

 Foodstamp - Voucher

x

CheckAuth DL Format x x

 MICR Format x
 Admin BatchSummary

 BatchClear (Supported only for Batch capture close method)
 BatchClose
 Gift (Prepaid) Issue x x

 Sale x x

 Return x x

 VoidSale x x

 VoidReturn x x

 Balance x x

 NoNSFSale x x

Loyalty Add x x

 Subtract x x

 Balance x x

CardLookup CardLookup x x

Credit TranCodes Used to Request a Token TranCodes for Subsequent Use of Token

Sale SaleByRecordNo

Return ReturnByRecordNo

VoidSale VoidSaleByRecordNo

VoidReturn VoidReturnByRecordNo

PreAuth PreAuthByRecordNo

PreAuthCapture PreAuthCaptureByRecordNo

Adjust AdjustByRecordNo

FSASale FSASaleByRecordNo

ReverseFSASale ReverseFSASaleByRecordNo

CardLookUp n/a

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

106

Appendix 3: AVS Response Codes
The AVSResponse codes values and match descriptions vary slightly from card brand:

Code VISA MC DISC (MPS Platform) AMEX

A Address matches, Zip does not. Address matches, postal
code does not

Address matches, Zip
does not.

Billing address only
correct

B Street address match. Postal code not
verified: incompatible formats

C Street address and postal code not
verified: incompatible formats

D Street Address and postal codes match
(International transactions)

G Address information not verified for
International transaction

I Address information not verified
(International transaction)

M Street address and postal code match
(International transactions)

N No match Neither address nor postal
code match

Nothing Matches Billing address and postal
code are both incorrect

P Postal code match. Street address not
verified due to incompatible formats

R Retry; System unavailable or timed out Retry: System unable to
process

Retry, system unable to
process.

System available: Retry.

S AVS currently not
supported

AVS not supported SE not allowed function

T 9-digit ZIP matches,
address does not

U Address not verified. Issuer not AVS
participant or AVS data was present but
issurer did not return result.

No data from issurer/
authorization system

No data from
issuer/authorization
system

W For U.S. addresses, 9-digit
postal code matches,
address does not; for
address outside the U.S.
postal code matches,
address does not.

Nine-digit Zip Code
matches, address does
not

X For U.S. addresses, 9-digit
postal code and address
match; for address outside
the U.S. postal code and
address match

All digits match, nine-
digit Zip Code

Y Street address and postal code match For U.S. addresses, 5-digit
postal code matches,
address matches.

All digits match 5-digit
ZIP code

Yes, billing address and
postal code are both
correct

Z Postal/ZIP matches; street address does
not match not included

For U.S. addresses, 5-digit
postal code matches,
address does not.

5-digit ZIP code matches,
address does not

Billing postal code only
correct

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

107

Appendix 4: Mercury Platform, DSIClientX Error, Exception, and Status Response Messaging

DSI Server Specific (TCP/IP)
Code Number Code Text

002000 Password Verified
002001 Queue Full
002002 Password Failed – Disconnecting
002003 System Going Offline
002004 Disconnecting Socket
002006 Refused ‘Max Connections’
002008 Duplicate Serial Number Detected
002009 Password Failed (Client / Server)
002010 Password failed (Challenge / Response)
002011 Internal Server Error – Call Provider

DSIClientX Specific (TCP/IP)
Code Number Code Text

001001 General Failure
001003 Invalid Command Format
001004 Insufficient Fields
001006 Global API Not Initialized
001007 Timeout on Response
001011 Empty Command String
003002 In Process with server
003003 Socket Error sending request.
003004 Socket already open or in use
003005 Socket Creation Failed
003006 Socket Connection Failed
003007 Connection Lost
003008 TCP/IP Failed to Initialize
003009 Control failed to find branded serial (password lookup failed)
003010 Time Out waiting for server response
003011 Connect Cancelled
003012 128 bit CryptoAPI failed.
003014 Threaded Auth Started Expect Response Event (Note it is
possible the event could fire before the function returns.)
003017 Failed to start Event Thread.
003050 XML Parse Error
003051 All Connections Failed
003052 Server Login Failed
003053 Initialize Failed
004001 Global Response Length Error (Too Short)
004002 Unable to Parse Response from Global (Indistinguishable)
004003 Global String Error
004004 Weak Encryption Request Not Supported
004005 Clear Text Request Not Supported
004011 Error Occurred While Decrypting Request
004010 Unrecognized Request Format
004017 Invalid Check Digit
004018 Merchant ID Missing
004019 TStream Type Missing
004020 Could Not Encrypt Response- Call Provider
009999 Unknown Error
100201 Invalid Transaction Type
100202 Invalid Operator ID

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

108

100203 Invalid Memo
100204 Invalid Account Number
100205 Invalid Expiration Date
100206 Invalid Authorization Code
100207 Invalid Reference Number
100208 Invalid Authorization Amount
100209 Invalid Cash Back Amount
100210 Invalid Gratuity Amount
100211 Invalid Purchase Amount
100212 Invalid Magnetic Stripe Data
100213 Invalid PIN Block Data
100214 Invalid Derived Key Data
100215 Invalid State Code
100216 Invalid Date of Birth
100217 Invalid Check Type
100218 Invalid Routing Number
100219 Invalid TranCode
100220 Invalid Merchant ID
100221 Invalid TStream Type
100222 Invalid Batch Number
100223 Invalid Batch Item Count
100224 Invalid MICR Input Type
100225 Invalid Driver’s License
100226 Invalid Sequence Number
100227 Invalid Pass Data
100228 Invalid Card Type

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

109

Appendix 5: Mercury's Web Services Legacy BIN LookUp

Mercury’s Web Services BIN Lookup

Web Service Lookup Call and XMLs
You can use the Web Services lookup call to determine if a card is a FSA, debit, or credit card.
This method takes two arguments: x.Lookup(tran, pw) where tran is the transaction xml string and pw is the password string
“xyz.”

 BIN Lookup Data Elements

Request

Element Req Min Max Type Description

Transaction:MerchantID Y 1 24 AN Merchant identification assigned by processor

Transaction:TranType Y 1 20 AN "Lookup"

Transaction:TranCode Y 1 40 AN "GetCardType"

Transaction:Account:Track2 Y 1 37 AN ABA Track2 data with start and end sentinel removed

OR

Transaction:Account:AcctNo Y 1 19 AN Account number

Response

Element Req Min Max Type Description

Status Y 1 10 A Indicates the outcome of the command:
"Success" = Command completed successfully
"Error" = Error processing command by processor

ReturnCode Y 1 6 N Return code which identifies the any error type. Value will
be zero if transaction processed normally. See Return
Codes for possible values.

TextResponse Y 1 50 AN For Successful responses, this field can contain an optional
message from the processor.
For other response codes, see Return Codes for values.

CardType* O 3 20 AN "VISA"
"M/C"
"AMEX"
"DCLB"
"DCVR"
"JCB"
"DEBIT"
"FSA"
"FSADebit"
"OTHER"

*Note: if a card is both Credit and Debit, only the DEBIT will be returned in the BIN Lookup response

Sample Code
Dim x As New ws.ws
x.Url = “ https://w1.mercurydev.net/ws/ws.asmx ”
x.Lookup(“<?xml

version=”1.0”?><TStream><Transaction><MerchantID>595901</MerchantID><OperatorID>test</OperatorID><T
ranType>Lookup</TranType><TranCode>GetCardType</TranCode><Memo>MPS Transact
1.2.0.4</Memo><Account><Track2>4003000123456781=09085025432198712345</Track2><Name>MPS
TEST</Name></Account></Transaction></TStream>”, “xyz”)

https://w1.mercurydev.net/ws/ws.asmx

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

110

Appendix 6: Error handling in E-Commerce Environments

Categories of Error Handling

General Response Categories TextResponse Verbiage eComm Handling Suggestions

1. Invalid Credentials/MID,
Merchant ID not Found
Response due to configuration
error

INVLD MERCH ID,
INVLD CREDENTIALS
MERCHANT ID NOT FOUND,
MerchantID not found (Gift)
Invalid Trantype for Prepaid
Server

“Web Site Application Error. Please Contact
###-###-####“(send corresponding email alert
notification to Gateway admin/merchant.)

Communication, Connectivity
and Socket Response Errors

EDC UNAVAILABLE,
DB UNAVAIL,
TIMEOUT ON RESPONSE,
TIMEOUT WAITING FOR
RESPONSE,
MAX CONNECTION ERROR,
SOCKET CONNECTION
FAILED,
NO CONNECTION TO ANY
SERVER,
HOST UNAVAIL,
ISSUER UNAVAIL

“We’re sorry. We are experiencing a
temporary connectivity error: Please try
again.”

Transaction Level
Approvals

AP,
AP*,
AP NEW INFO,

“Approved, Successful!”

Transaction Level Declines:
Declines

DECLINED,
OTHER NOT EXCEPTED,
PIC UP,
EXCEEDS MAX AMT,
DECLINE TRY LATER

“We’re Sorry, your transaction has Declined.”

Transaction Level Declines:
Invalid Data Errors

INVLD ACCT,
INVALID EX DATE,
INVALID REFERENCE
NUMBER,
INVLD TRAN CODE,
INVALID FIELD: ______.

“Your account information has been entered
incorrectly. Please retry”. (maximum retries of
3)

Transaction Level Declines:
Duplicate Transaction

(AP*-- signifies duplicate logic
detected duplicate and did not
charge the card twice)
AP DUPE

“Duplicate transaction data has been entered.
Transaction Declined.”

Transaction Level Declines:
Call Referrals

CALL AE,
CALL DISCOVER,
CALL ND,
CALL XXXX

“Your transaction has declined: please
contact us at ###-###-#### to complete your
transaction. “

Verification Result codes: CVV

M=CVV Match
N=CVV no Match
P=Not Processed
DECLINED-CV2 FAIL

“Your information has been entered
incorrectly. Please verify and retry.”
(maximum retries of 3) or Auto void upon CVV
fail response of N or base void on established
criteria as in >$300.00 NOTE: Mercury

recommends coding provisions for Merchant level
configurable attributes.

Verification Result codes: AVS (AVS Varies by card brand, all
single digit alpha characters)
See attached for details

“Your information has been entered
incorrectly. Please verify your retry.”
(maximum retries of three)

Settlement Response Codes OK,
INV BAL/SETL,
MUST BAL NOW

Merchant/Shopping Cart/Gateway level only

Gift Card (PrePaid) Error
Responses

Invalid Account Number
Account not Issued
Account Expired
Account Already Issued
Issuance not Authorized

“We’re Sorry, your transaction has declined:
(All gift transaction error verbiage may be
passed as is)

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

111

Insufficient Account Balance
Mag Stripe Error-Hand Key
Amount Exceeds Maximum
Return Not Allowed
Account Deactivated
Number of Returns on Card
over Limit
Account in Use
Could not VoidIssue

Error Handling by CmdStatus
The ProcessTransaction method returns an XML format string defining the outcome of the processing request. The format
of the XML response depends on the transaction type and code requested. Every XML response includes a CmdResponse
element with ResponseOrigin, DSIXReturnCode, CmdStatus, TextResponse and UserTraceData. Error handling in
eCommerce environments can be triggered from four CmdStatus responses:

CmdStatus Y Indicates the outcome of the command:
“Approved” = transaction approved by payment processor
 “Declined” = transaction declined by payment processor
 “Success” =command completed successfully
 “Error” =error processing command. Check DSIXReturnCode and TextResponse for info on error

If CmdStatus = Approved return to web application: “Transaction Approved”

If CmdStatus = Declined return to web application: “Transaction Declined”

If CmdStatus = Declined and TextResponse includes Reason/Action of [DECLINED, OTHER NOT EXCEPTED, PIC UP, EXCEEDS
MAX AMT, DECLINE TRY LATER] return to web application: “Transaction Declined”

If CmdStatus = Declined and TextResponse includes Reason/Action of [INVLD ACCT, INVALID EX DATE, INVALID REFERENCE
NUMBER, INVLD TRAN CODE, INVALID FIELD] return to web application: “Your account information has been
entered incorrectly. Please retry”. (Maximum retries of 3)

If CmdStatus = Declined and TextResponse includes Reason/Action of [CALL AE, CALL DISCOVER, CALL ND, CALL
XXXX]return to web application: “Transaction Declined: please contact us at ###-###-#### to complete your transaction”.

If CmdStatus = Declined and TextResponse includes Reason/Action of [AP DUPE]return to web application: “Transaction
Declined: Duplicate Transaction”.

If CmdStatus = Successreturn to web application: “Transaction Completed Successfully” (ADMIN response)

If CmdStatus = Errorreturn to web application: “An Error has Occurred” (Log full response to merchant and Site
Administrator)

Ecommerce Website Requirements

Before a business can be approved to process ecommerce transactions, it must have a valid website with the requirements listed
below. Should the products or services offered through an ecommerce merchant account change, Mercury® must be notified
immediately. A merchant that currently has a retail or MO/TO account with Mercury must submit an entirely separate application
for ecommerce. Mercury issues ecommerce merchants unique Merchant ID numbers upon underwriting approval.

The following ecommerce policies and procedures have been established to comply with Visa®, MasterCard®, Discover® and
Mercury regulations:

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

112

1. Product(s) Sold Ecommerce merchants must maintain a valid website with complete descriptions of the products and
services sold. All federal and state laws apply in addition to the card association regulations regarding all products and
services sold.

2. Security Policy Ecommerce merchants must submit transactions for authorization and settlement through a secure online

gateway. The security protocols used to protect a customer’s information must be disclosed.

3. Privacy & Return Policy The website must contain a return, refund and privacy policy. Terms of Use or Terms and
Conditions must also be properly disclosed on the website.

4. Delivery Policy Ecommerce merchants set their own policies and restrictions regarding delivery of goods. Any restrictions

on delivery must be clearly stated on the website.

5. Customer Service Contact Contact information for your business must be easily accessible to customers. It must show a
physical address along with an electronic mail address and telephone number.

6. Card Acceptance Brand Marks Full color brand marks are required by Visa®, MasterCard® and Discover®. The American

Express® logo must be displayed if accepted.

http://usa.visa.com/merchants/marketing_center/logo_usage.html
http://www.mastercardbrandcenter.com/us/index.shtml
http://www.discovernetwork.com/clientsupport/signageacceptance.html
https://www209.americanexpress.com/merchant/marketing-data/pages/logosandsupplies

Mercury’s underwriting process is not arbitrary and prohibited merchants can change at any time, based on revisions dictated by our
sponsor bank.

Ecommerce Best Practices

1. Shipping and Delivery The shipping method, time frame and delivery procedures should be clearly stated. After the
payment has been accepted, the product must ship immediately. The customer cannot be charged unless the product is in
inventory and ready to ship.

2. Transaction Receipt A transaction receipt via electronic mail should be provided to the customer and must include your

business name, web address, contact information and the terms and conditions of the sale. Always keep the transaction
receipt, shipping record (UPS, Airborne, FedEx or USPS) and proof of delivery on file. This information will need to be
presented in the event of a chargeback.

3. Transaction Verification AVS (the Address Verification System) should be used to validate the billing address of the

cardholder. Use of Card Verification Value (CVV2) to further validate the transaction.

4. Suspicious Transactions It is highly advised to develop in-house policies and procedures for handling irregular or suspicious
transactions and provide appropriate training for sales staff. Any order that seems suspicious should be further
investigated. Contact the cardholder for verification. Orders that failed AVS or CVV2 validation should be flagged for
research. If an order is high risk or possibly fraudulent, void the transaction immediately. Shipping orders that are not
validated by AVS or CVV2 could result in chargebacks and loss of merchandise. All ecommerce merchants should be
extremely suspicious of international orders. Some geographic areas have a higher frequency of fraud and black market
stolen credit card information.

Additional policies and procedures should be put into place to monitor the following types of orders; rush orders, random
orders (orders not specifying color, size, etc.), shipping address not the same as billing address, shipments to post office
boxes or business addresses, transactions associated with anonymous email addresses or orders from internet addresses at
free email services.

http://usa.visa.com/merchants/marketing_center/logo_usage.html
http://www.mastercardbrandcenter.com/us/index.shtml
http://www.discovernetwork.com/clientsupport/signageacceptance.html
https://www209.americanexpress.com/merchant/marketing-data/pages/logosandsupplies

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

113

5. Acknowledgement of Policies Policies that do not require a cardholder to click and accept them leave merchants open to
claims by the cardholder that they were not aware of the merchant’s policies at the time of the transaction.

For More Best Practices on Ecommerce Transactions
http://usa.visa.com/download/merchants/card_acceptance_guide.pdf

Appendix 7: Canadian Legacy Interac Debit Integration Certification Requirements

Mercury's Legacy Canadian Debit Solution

The following outlines Mercury’s standard, "legacy" non-EMV Canadian Debit certification. This certification is based on the
2007 finalized remote Canadian Interac Debit Authority test plan. For EMV/Chip specific certifications, please review the
previous section. Mercury's Interac certification requires completion of a standard credit certification before to completing
the Interac requirements. Mercury’s developer support team will be your primary liaison to coordinate the Canadian debit
certification.

Canadian Debit General Integration Information and Procedures
Canadian PIN-based debit processing is unique to the Canadian Debit Authority, Interac, which governs all aspects of the debit
process. The Canadian debit certification process is coordinated by Mercury’s developer support representatives in
conjunction with our Canadian Interac sponsor.

Canadian debit is only supported via a Windows ActiveX component using the DSIClientX controlling the device interaction to
the VeriFone sc5000 and the Ingenico i3070CA.

Integration Best Practices: Legacy Canadian Debit certification is a remote certification process and requires both debit
and credit transactions are processed through the PIN pad. Credit certification is processed seperately using the DSIClient
control to distinguish Interac Canadian Debit cards from credit cards. The DSIClient application has gone through an
extensive screening by Interac and is a certified debit/credit application.

1. Test kit including PIN pad, Canadian debit test cards and certification instructions can be obtained through

your Mercury representative in coordination with our Canadian Interac sponsors.
2. Final certification tests will follow an Interac Canadian Interac Debit Authorization Certification Script

obtained from Mercury.
3. The VeriFone SC5000 and Ingenico i3070 are currently supported. NOTE: Manufactures end of product life

notice: BOTH OF THESE DEVICES HAVE BEEN DISCONTINUED AND AVAILABLE DEVICES ARE IN SHORT
SUPPLY.

4. The POS does not need to interface directly with the PIN pad, as the DSIClient application handles all
communications with the PIN device.

5. Resetting the PIN Pad: Resetting the PIN pad is accomplished via an XML string sent to the
ProcessCanadianTransaction() method.

Canadian Transaction: Resetting the Pin Pad
Example:
 <?xml version=”1.0?>
<TStream>
 <Admin>
 <MerchantID>Actual Canadian Debit MerchantID</MerchantID>
 <OperatorID>Operator Id</OperatorID>
 <TranType>Debit</TranType>
 <TranCode>PadReset</TranCode>
 <ComPort>ComPortNumber</ComPort>
 <InvoiceNo>Actual Invoice Number</InvoiceNo>
 <RefNo>SameAsInvoice</RefNo>
 <SequenceNo>Last Sequence Number Returned From DSIClient</SequenceNo>
 </Admin>
</TStream>

http://usa.visa.com/download/merchants/card_acceptance_guide.pdf

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

114

6. The integration uses the ProcessCanadianTransaction() method, detailed in the DSIClientX Programming

Interface Specification.
7. KeyChange Transaction: “The Canadian PIN pads receive updated key information from the processing

network from time to time to encrypt user PIN information. When a new PIN pad is initially deployed, it will
have internal keys which are out of synch with the processing host. In order to update the keys in the PIN pad
with the processing host, a Key Change transaction must first be performed. Generally, whenever an
encryption error occurs, a system should first attempt a key change transaction to re-sync keys in the PIN pad
and the processing host. The ECR/POS must support the KeyChange transaction and make it available as an
administrative function; the KeyChange transaction is the only method to remedy a key discrepancy and
permit processing to continue with the PIN pad.” (From DataCap Systems, Inc, DSIClientX Programming
Interface Specification)

In addition to sending a KeyChange transaction when a PIN pad is first used, a KeyChange should also be sent
on a “Please Retry” decline when the Bank Response Code = 898 and the ISO Response Code = 63. All other
“Please Retry” declines require only that the transaction be resent.

8. A receipt must be printed, regardless of whether the transaction was approved or declined. The receipt

should contain all print data returned from the DSIClient™.
9. Two copies of a Canadian Debit receipt must be printed regardless of whether the transaction was

approved, declined, or failed. Both the customer and merchant copy must contain all Print Data returned
in the Canadian Debit transaction response.

10. Credit and debit multiple merchant IDs: At least two MerchantIDs are involved for each merchant that
processes both Canadian credit and debit. Credit transactions are sent with one MerchantID. In addition,
each PIN pad has its own MerchantID, based on the device’s serial number. Therefore, the POS will need to
keep track of one credit MerchantID, and as many debit MerchantIDs as there are PIN pads.

11. Batch settlement initiated by host (aka “time”) or by merchant: Mercury’s Canadian sponsoring debit
representatives can configure Canadian merchant accounts for either time or merchant initiated batch
closure. For a POS system to support the latter, it must be able to send a separate BatchClose request for
each individual credit and debit MerchantID and be certified by Global Payment Systems for Canadian debit
batch settlement. NOTE: PIN pad BatchClose Type must be specified when ordered.

12. Reversals required for certification: Canadian debit certification requires that reversals be supported.
Reversals are used in cases where communication problems along the transaction processing path leave it
unclear as to whether the processor actually received and processed a transaction. The reversal is sent to
the processor to clear the slate and cancel the transaction if it did go through. This leaves the merchant free
to send the transaction again without risking a duplicate charge.

13. Note: <PadType> in the XML requests should always be a configurable value and should never be hard-
coded. Mercury currently supports 3 pad types. Mercury1: VeriFone sc5000, Mercury2: Ingenico i3070
(Legacy) and Mercury3: Ingenico i3070 (DSIClientX 3.85)

Integration Best Practices: The DSIClientX handles Canadian debit reversals automatically upon receipt of the appropriate
response codes.

Steps for processing a standard Credit card on the Canadian debit PIN pad

For remote certification, Mercury’s Interac sponsor specifies that credit card transactions must also originate from
the PINpad. The DSIClientX handles this interaction (Service Code 220) by detecting the card is not a Canadian Debit
card and returning Track2 data to the POS to process the transaction via standard credit methods and using the
location’s credit MerchantID. In order to accommodate this, POS systems should use the following logic:

 Do not prompt the user or merchant for Credit/Debit.

 Send only a Canadian debit sale request to the PIN pad. The device will prompt for a card swipe.

 If the card swiped is Canadian Debit, it will process as such.

 If a Credit card is swiped, the DSIClientX will detect this and return an XML string “Not a Canadian Debit
Card” in the TextResponse field as well as the Track2 data of the Credit card.

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

115

 Use the Track2 data to send a credit sale transaction with ProcessTransaction() method using Merchant’s
Credit MID.

 Use the PadReset to reset the PIN pad message.

Canadian debit and duplicate checking:
Canadian debit only looks at card number and amount in any current batch for its duplicate checking logic. For a
Canadian debit transaction of the same amount on the same card, please use the Duplicate Override tag
(<Duplicate>Override<Duplicate>).

The most common way to do this is to detect the “AP Dupe” response on Canadian debit transactions, then prompt
the operator with “Duplicate transaction: Override and charge again?” Rerun the transaction with the Duplicate
Override tag if the operator chooses to proceed. The customer will have to swipe again, but by doing this, you’ll avoid
the common scenario of the response not making it back to the POS system and a duplicate charge going through.
Service Code 220 As of March 1, 2008, Interac requires that systems supporting Canadian debit must include Service
Code 220, which checks to see if the card in use can be run as Canadian Debit. Systems must be using DSIClientX
version 3.30 or above to meet this requirement, although it is always best to use the latest version available. The
latest client version can be obtained at no charge from Datacap’s website,
http://www.datacapepay.com/dsiclient.htm .

Procedures for Canadian Debit Certification

 Inform Mercury’s developer support department of the intention to integrate to Canadian debit.
 When the POS system is certified for credit, Mercury will contact a representative from our Interac

Canadian debit sponsoring host, who will ship a test PIN pad and test kit (including test cards and
necessary documentations) and provide the certification requirements. There is no fee.

 Once the PIN pad and test kit is received, forward the serial number to Mercury developer support. A test
debit account will be added to the Mercury development server, using the serial number as a unique TID
and the MerchantID will be given to the developer.

 Coordinate the development and testing with Mercury’s developer support team. Once development is
complete, Mercury and the developer will coordinate the certification, explained above, with our
sponsoring Interac Canadian debit host.

Certification Process
1. Initial review: developers will email or FAX clearly labeled transaction receipts in one document in the exact order

outlined in the Canadian Interac Debit Authorization Certification Script to their Mercury developer support
representative for examination. (#42 will be arranged in conjunction with our Canadian Interac Sponsor. #41 and
#49-52 are not required.)

2. Previewed and corrected receipts will be forwarded to Mercury’s Interac Canadian debit representatives for their
final review and approval.

3. Final attended certification tests: a telephone conference call will be arranged with Mercury’s Canadian Debit Interac
Sponsor, your developer support representative, and yourself to run through and confirm in real time a select
number of transactions from the Canadian Interac Debit Authorization Certification Script.

4. All receipts from the above final attended tests will be sent by FAX or email to your Mercury developer support
representative.

Canadian Debit Transaction Receipt Requirements

1. A Transaction Receipt must be printed for every Debit card transaction attempt to be sent to Mercury for
authorization, whether it was approved, declined or even completed.

2. A Transaction Receipt is required for a Credit card transaction only when approved.
3. The Debit transactions can only be for a Purchase or a Refund.
4. For Refunds, the word "refund" ("Remise" in French) must appear after the Dollar amount.
5. The amount must always appear even if the transaction is declined or not completed.
6. If the cardholder language cannot be determined, then it is preferable to print variable information in both

languages on the one receipt. If it is not possible to determine the cardholder language, then the language of the
merchant’s POS (i.e. English) shall be used.

http://www.datacapepay.com/dsiclient.htm

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

116

7. The POS must generate two receipt copies, one for the customer and one for the merchant, for all CA Debit
transactions whether approved, declined or failed. An electronic receipt copy stored for a period of one year is an
acceptable substitution for printing the merchant receipt copy at the time of the transaction.

8. Customer copy or merchant copy must appear on the receipt and in the appropriate language of the card.
Merchant Copy/Copie Marchand or Customer Copy/Copie Client.

9. One copy must be supplied to the cardholder
upon completion of the transaction, whether approved or not.

10. Except for cancelled transactions and timed
out transactions, the Response verbiage MUST always show the
ISO Response Code and the Bank Response Code.

The following example includes all mandatory fields required:

TRANSACTION TYPE: Must show the type of transaction (i.e.
“Purchase” (“Achat”) or “Refund” (“Remise d’achat”)

ACCOUNT TYPE: Must show the Cardholder’s selected account
type (i.e. “Chequing” (“Cheque”) or “Savings” (“Epargne”)

DATE/TIME: The date and time returned in the Debit Card
Response message is to be used in this field. The date can be in
any format, but must include the month, day and year. The time
must be in 24-hour format.

REFERENCE and SEQUENCE #: Must show the PIN pad Serial Number. Must show the POS Sequence Number followed by an “S” for
Swiped or an “M” for Manual. Note: Debit cards must always be swiped therefore should always show an “S”.

APPROVAL/AUTHORIZATION #: Must show the Approval Number returned in Debit Card Response message.

 RESPONSE VERBIAGE xx: Must show the ISO Response Code returned in the Debit Card Response message (found in the
Verbiage field). If the transaction was never completed, this field should be blank and the Verbiage would show
“Transaction Not Completed” (Opération Non Executée). XXX Must show the Bank Response Code returned in the Debit
Card Response message.

Language requirements: Any additional fields placed on the receipt must be in the language of the card swiped and are
subject to Interac certification requirements.

Appendix 8: DataCap Systems, Inc. IP/Dial Bridge™ for Mercury

Developed in partnership with DataCap Systems, Inc., the IP/Dial Bridge for Mercury enables Windows-based POS systems (non-
embedded Windows 2000© or greater) to seamlessly switch to dial processing should their IP connection fail and then automatically
switch back to IP processing when connectivity returns. Software on the POS system monitors and routes the processing traffic via a
DialLink™ modem. The IP/Dial Bridge for Mercury is a pre-loaded dial backup or dial-only solution designed for use with POS
applications integrated with DSIClientX™.

The DataCap IP/Dial Bridge™ for Mercury and DialLink™ Modem

 Enables automatic dial failover for payment processing when IP services are disrupted
 Improves reliability and functionality for merchants at a lower cost
 Supports credit, U.S. PIN debit, gift, EBT and food stamp transactions.
 By design, The DataCap Dial Bridge supports MToken for credit transactions only:

Credit Sale
Credit FSA Sale
Credit Return
Credit Reversal (Enhanced Void)

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

117

Credit Void (Legacy Void)
Credit Pre Auth
Credit Adjust
Credit Pre Auth Capture (Completion)

 Can also be used as a stand-alone dial solution.
 Pre-loaded to facilitate fast deployment and easy 2-minute automated 24/7 online activation
 Faster connection time than conventional modems
 Requires only that the Mercury host DNS addresses be configurable at the POS level
 Multi-lane capability up to four lanes per Bridge unit
 Does not support encrypted transaction processing using an End to End or Point to point encryption device.

Developer Set-up and Testing Options
Integration Best Practice: Developers are encouraged to test and confirm the operation of the Dial Bridge in all transport
modes (IP only, IP with dial backup, and dial only).

Your Mercury developer support representative will coordinate deployment of a test Dial Bridge unit for testing purposes.
Upon arrival, the Bridge software must be downloaded and installed directly from DataCap http://www.datacapepay.com/ .
Activation of the unit is not required if testing will take place within the 15-day trial period.

Once the Bridge software is installed locally (on the same PC as your POS application), simply change the DNS host address in
your server configurations, to 127.0.0.1 in place of the Mercury host DNS addresses. This will route all transactions through the
Bridge software and, when in dial transport mode, to the DialLink™ modem. Note: If the Dial Bridge software is installed on a
separate PC, as in a back office server, use the IP Address of that computer in the host configuration settings.

As the Bridge software is hard-coded to point to the Mercury Production hosts x1.mercurypay.com;b2.backuppay.com, all IP
and dial processing traffic will now be routed to these servers. Continue using the Merchant ID of 595901.

For testing purposes over production, you must change the default BIN in the Bridge software’s Setup Merchant Parameters
screen from 023400 to 095000. The default Authorization Phone Number will route to Production. (To make this change, go to
the IP/Dial Bridge Menu bar, select Setup and choose Merchant Parameters. The Setup IP/Dial Bridge Parameters dialogue box
appears.)

For testing over the development network, two additional changes are required: a host redirect and changing the default
to the Mercury Authorizing Phone Number.
Configuring a Host Redirect:
First, determine the Mercury Developer Host IP:

http://www.datacapepay.com/

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

118

 Open command prompt - Start>Run>cmd
 Type “nslookup” and press enter
 Type “server 4.2.2.2” and press enter
 Type the URL of the server you want to redirect to and press enter to get its IP address (in our case,

x1.mercurydev.net—and this currently returns 69.39.11.83).
Redirecting the Host File

 open HOSTS file from C:\WINDOWS\SYSTEM32\DRIVERS\ETC using notepad
 on a new line in the file, add the IP address of the server you want to redirect to (from #4 above) followed by

at least one space and then the name of the URL server you want to redirect traffic from. (In our case
x1.mercurypay.com and then b2.backuppay.com)

 repeat step 2 for each address you want to redirect
 save and close HOSTS file

Example - this redirects traffic to IP address 69.39.11.83 (the Dev host) that would normally be sent to
x1.mercurypay.com/b2.backuppay.com to

69.39.11.83 x1.mercurypay.com
69.39.11.83 b2.backuppay.com

Changing the Merchant Setup Defaults for Testing:
Now that the host is redirected to Mercury’s development network, using MerchantID 595901, developers will need to change
two default settings in the bridge software: the Mercury authorization phone number and the assigned BIN. The default
authorization phone number is 18778471343. For testing over Dev, change to 18888599493. The default BIN# is 023400. For
testing, change to 095000. (To make these changes, go to the IP/Dial Bridge Menu bar, select Setup and choose Merchant
Parameters. The Setup IP/Dial Bridge Parameters dialogue box appears.)

Testing Options when using the DataCap Systems, Inc., IP/Dial Bridge for Mercury:

1. Production Testing:

IP/Dial Bridge

software points

processing to MPS

production servers.

Requires BIN change.

MID 595901 IP now routed to x1.mercurypay.com

MID 595901 dial now routed to dial platform
(18778471343)

2. Developer testing:

Requires host redirect

plus changes to the

default BIN and Auth

Phone Number

MID 595901 now routed to x1.mercurydev.net

MID 595901 redirected to 18888599493

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

119

Appendix 9: MercuryPay Development Network Testing Credentials

Certification Network Testing Information

Server Addresses, Merchant IDs, and Test Cards used on the MercuryPay Developer Certification Platform

Development Network Server DNS/URL Use

x1.mercurydev.net;x2.mercurydev.net ActiveX credit/debit developer certification servers

xs1.mercurydev.net ActiveX credit/debit Stand-in server

w1.mercurydev.net/ws/ws.asmx WebServices Credit/Debit/Gift,
WSDL at https://w1.mercurypay.com/ws/ws.asmx?WSDL

ws1.mercurydev.net/ws/ws.asmx WebServices Credit/Debit Stand-in server

g1.mercurydev.net;g2.mercurydev.net Mercury Gift servers. Port 9100 must be specified

fe1.mercurydev.net Canadian EMV used in conjunction with DataCap NETePay 4.0

MerchantID Use WebServices Password (If used)

595901 Standard Credit, Debit, EBT, Gift, processing xyz

334110 CheckAuth Processing—see guide for additional details NA

395347305=E2E E2E enabled MerchantID; allows E2E Encryption ONLY 123E2E

395347306=TOKEN MToken enabled MerchantID; Tokenization Validation ONLY 123TOKEN

395347308=E2ETKN E2E and Token enabled MID; allows E2E and Token Validation 123E2ETKN

CardType Test Card Number ExpDate CVV AVS Data Remarks

MC (Credit/Debit/EBT)

2PM EST to 8 PM EST
5499990123456781 0513 123 Address: 4 ZIP: 30329 Requires amounts less

than $10.99; use any PIN

Visa (Credit/Debit/EBT) 4003000123456781 0513 123 Address: 4 ZIP: 30329 Requires amounts less
than $10.99; use any PIN

Amex (Credit)
2PM EST to 8 PM EST

373953244361001 0513 1234 Address: 1661 ZIP: 85016 Allows higher amounts

Discover (Credit) 6011000997235373 0513 362 Address: 2500 ZIP: 60015 Allows higher amounts

Partial Approval Cards Test Card Number ExpDate Notes PartialAp Amount

Visa and Visa FSA 4005550000000480 1215 na For reversal decline test
may be used with $24.01

Use amount of $23.54,
PartialAp=$20.00

MC Prepaid Debit 5439750001500248 1215 na Use after 2pm EST; requires
OperatorID of ‘test’

Use amount of $23.62,
PartialAp=$20.00

Discover PrePaid Debit 6011900212345677 1215 na Note: requires OperatorID
of ‘test’

Use amount of $23.07,
PartialAp=$20.00

 Physical Test cards available from your developer support representative.
 Mercury’s certification network is available daily except from 8PM to Midnight EST, M-F, when an Alternative

Transaction Routing (ATR) Server handles all non ADMIN and non-referenced transactions. (during ATR, Reversals,
Adjusts, Batch Summary, Batch Close and Canadian processing unavailable.)

 Certification network availability may change without notice.
 Due to EMV simulator conflicts, MasterCard and Amex currently may only be used from 2PM EST to 8 PM EST.)

Certification Network Reporting
To view test Credit, Debit, EBT, Gift and Loyalty transactions over the Developer Certification Network, go to
http://www.mercurydev.net/DeveloperReporting . Login using: Username: jerry and Password: jerry.

If applicable, it is recommended to filter using your system's Memo field.

PINpad and End to End Encryption
The developer certification network uses unique test encryption keys for both the PINpad encryption and End to End

http://www.mercurydev.net/DeveloperReporting

 M e r c u r y

P l a t f o r m I n t e g r a t i o n S p e c i f i c a t i o n s 0 7 . 3 0 . 2 0 1 2

120

encryption technologies. When ordering units for testing purposes, be sure to specify Mercury Global East test key for
PINPad injection. Contact your developer support representative for additional information on encryption device KSNs.

No Test Cards on Live Accounts; No Live Cards on Test Accounts
Test card transactions will decline in non-test accounts. Accordingly, transactions from non-test cards will decline in test
accounts. These features exist to reduce the possibility of unintentional error.

 A test card in a live merchant account will cause the entire batch to be discarded. If you include the test card in a
real merchant account, you must clear or close the batch, before using the account for live transactions.

 Live transactions processed over test Merchant accounts will not settle. However, authorizations on live cards may
freeze funds. Please do not use live cards on the test account.

For additional information, contact us at: DeveloperSupportNotify@Mercurypay.com,
800.846.4472, Ext. 1808, FAX 970.385.2738

mailto:DeveloperSupportNotify@Mercurypay.com

